STRANGE R N, SCOTT P R. Plant Disease: A Threat to Global Food Security[J]. Annual Review of Phytopathology, 2005, 43: 83-116. doi: 10.1146/annurev.phyto.43.113004.133839
|
刘万才, 刘振东, 黄冲, 等. 近10年农作物主要病虫害发生危害情况的统计和分析[J]. 植物保护, 2016, 42(5): 1-9, 46.
|
谭光万, 王秀东, 王济民, 等. 新形势下国家食物安全战略研究[J]. 中国工程科学, 2023, 25(4): 1-13.
|
Food and Agriculture Organization of the United Nations. 2021 Annual Report—Plant Production and Protection[R]. Rome, 2022.
|
翟肇裕, 曹益飞, 徐焕良, 等. 农作物病虫害识别关键技术研究综述[J]. 农业机械学报, 2021, 52(7): 1-18.
|
邱德文. 我国植物病害生物防治的现状及发展策略[J]. 植物保护, 2010, 36(4): 15-18, 35.
|
陈雷, 袁媛. 大田作物病害识别研究图像数据集[J]. 中国科学数据, 2019, 4(4): 85-91.
|
黄文江, 刘林毅, 董莹莹, 等. 基于遥感技术的作物病虫害监测研究进展[J]. 农业工程技术, 2018, 38(9): 39-45.
|
张凝, 杨贵军, 赵春江, 等. 作物病虫害高光谱遥感进展与展望[J]. 遥感学报, 2021, 25(1): 403-422.
|
ZHANG J C, HUANG Y B, PU R L, et al. Monitoring Plant Diseases and Pests through Remote Sensing Technology: A Review[J]. Computers and Electronics in Agriculture, 2019, 165: 104943. doi: 10.1016/j.compag.2019.104943
|
杭立, 车进, 宋培源, 等. 基于机器学习和图像处理技术的病虫害预测[J]. 西南大学学报(自然科学版), 2020, 42(1): 134-141.
|
王海光. 智慧植保及其发展建议[J]. 中国农业大学学报, 2022, 27(10): 1-21.
|
邵明月, 张建华, 冯全, 等. 深度学习在植物叶部病害检测与识别的研究进展[J]. 智慧农业(中英文), 2022, 4(1): 29-46.
|
慕君林, 马博, 王云飞, 等. 基于深度学习的农作物病虫害检测算法综述[J]. 农业机械学报, 2023, 54(S2): 301-313.
|
BOULENT J, FOUCHER S, THÉAU J, et al. Convolutional Neural Networks for the Automatic Identification of Plant Diseases[J]. Frontiers in Plant Science, 2019, 10: 941. doi: 10.3389/fpls.2019.00941
|
郑文晖. 文献计量法与内容分析法的比较研究[J]. 情报杂志, 2006, 25(5): 31-33.
|
张增可, 王齐, 吴雅华, 等. 基于CiteSpace植物功能性状的研究进展[J]. 生态学报, 2020, 40(3): 1101-1112.
|
AHILA PRIYADHARSHINI R, ARIVAZHAGAN S, ARUN M, et al. Maize Leaf Disease Classification Using Deep Convolutional Neural Networks[J]. Neural Computing and Applications, 2019, 31(12): 8887-8895. doi: 10.1007/s00521-019-04228-3
|
CHEN W R, CHEN J D, DUAN R, et al. MS-DNet: A Mobile Neural Network for Plant Disease Identification[J]. Computers and Electronics in Agriculture, 2022, 199: 107175. doi: 10.1016/j.compag.2022.107175
|
ALGULIYEV R, IMAMVERDIYEV Y, SUKHOSTAT L, et al. Plant Disease Detection Based on a Deep Model[J]. Soft Computing, 2021, 25(21): 13229-13242. doi: 10.1007/s00500-021-06176-4
|
RUMPF T, MAHLEIN A K, STEINER U, et al. Early Detection and Classification of Plant Diseases with Support Vector Machines Based on Hyperspectral Reflectance[J]. Computers and Electronics in Agriculture, 2010, 74(1): 91-99. doi: 10.1016/j.compag.2010.06.009
|
MAHLEIN A K, RUMPF T, WELKE P, et al. Development of Spectral Indices for Detecting and Identifying Plant Diseases[J]. Remote Sensing of Environment, 2013, 128: 21-30. doi: 10.1016/j.rse.2012.09.019
|
MAHLEIN A K, OERKE E C, STEINER U, et al. Recent Advances in Sensing Plant Diseases for Precision Crop Protection[J]. European Journal of Plant Pathology, 2012, 133(1): 197-209. doi: 10.1007/s10658-011-9878-z
|
肖春艳, 胡情情, 陈晓舒, 等. 基于文献计量的大气氮沉降研究进展[J]. 生态学报, 2023, 43(3): 1294-1307.
|
TOO E C, LI Y J, NJUKI S, et al. A Comparative Study of Fine-Tuning Deep Learning Models for Plant Disease Identification[J]. Computers and Electronics in Agriculture, 2019, 161: 272-279. doi: 10.1016/j.compag.2018.03.032
|
SANKARAN S, MISHRA A, EHSANI R, et al. A Review of Advanced Techniques for Detecting Plant Diseases[J]. Computers and Electronics in Agriculture, 2010, 72(1): 1-13. doi: 10.1016/j.compag.2010.02.007
|
KHANAL S, FULTON J, SHEARER S. An Overview of Current and Potential Applications of Thermal Remote Sensing in Precision Agriculture[J]. Computers and Electronics in Agriculture, 2017, 139: 22-32. doi: 10.1016/j.compag.2017.05.001
|
FERENTINOS K P. Deep Learning Models for Plant Disease Detection and Diagnosis[J]. Computers and Electronics in Agriculture, 2018, 145: 311-318. doi: 10.1016/j.compag.2018.01.009
|
钟文娟. 基于普赖斯定律与综合指数法的核心作者测评——以《图书馆建设》为例[J]. 科技管理研究, 2012, 32(2): 57-60.
|
宋勇, 陈兵, 王琼, 等. 无人机遥感监测作物病虫害研究进展[J]. 棉花学报, 2021, 33(3): 291-306.
|
MARTINELLI F, SCALENGHE R, DAVINO S, et al. Advanced Methods of Plant Disease Detection. A Review[J]. Agronomy for Sustainable Development, 2015, 35(1): 1-25. doi: 10.1007/s13593-014-0246-1
|
LAMPSON B D, HAN Y J, KHALILIAN A, et al. Development of a Portable Electronic Nose for Detection of Pests and Plant Damage[J]. Computers and Electronics in Agriculture, 2014, 108: 87-94. doi: 10.1016/j.compag.2014.07.002
|
POTTER J J, TAN S, PENCZYKOWSKI R M. Robotany: A Portable, Low-Cost Platform for Precise Automated Aerial Imaging of Field Plots[J]. Methods in Ecology and Evolution, 2021, 12(10): 1860-1866. doi: 10.1111/2041-210X.13688
|
DENG X L, ZHU Z H, YANG J C, et al. Detection of Citrus Huanglongbing Based on Multi-Input Neural Network Model of UAV Hyperspectral Remote Sensing[J]. Remote Sensing, 2020, 12(17): 2678. doi: 10.3390/rs12172678
|
CHEN T T, YANG W G, ZHANG H J, et al. Early Detection of Bacterial Wilt in Peanut Plants through Leaf-Level Hyperspectral and Unmanned Aerial Vehicle Data[J]. Computers and Electronics in Agriculture, 2020, 177: 105708. doi: 10.1016/j.compag.2020.105708
|
AMARASINGAM N, GONZALEZ F, SALGADOE A S A, et al. Detection of White Leaf Disease in Sugarcane Crops Using UAV-Derived RGB Imagery with Existing Deep Learning Models[J]. Remote Sensing, 2022, 14(23): 6137. doi: 10.3390/rs14236137
|
张晓东, 杨皓博, 蔡佩华, 等. 松材线虫病遥感监测研究进展及方法述评[J]. 农业工程学报, 2022, 38(18): 184-194.
|
FENG L, CHEN S S, ZHANG C, et al. A Comprehensive Review on Recent Applications of Unmanned Aerial Vehicle Remote Sensing with Various Sensors for High-Throughput Plant Phenotyping[J]. Computers and Electronics in Agriculture, 2021, 182: 106033. doi: 10.1016/j.compag.2021.106033
|
ENCISO J, MAEDA M, LANDIVAR J, et al. A Ground Based Platform for High Throughput Phenotyping[J]. Computers and Electronics in Agriculture, 2017, 141: 286-291. doi: 10.1016/j.compag.2017.08.006
|
ZHANG C Y, CHEN W D, SANKARAN S. High-Throughput Field Phenotyping of Ascochyta Blight Disease Severity in Chickpea[J]. Crop Protection, 2019, 125: 104885. doi: 10.1016/j.cropro.2019.104885
|
ZHANG C Y, CRAINE W A, MCGEE R J, et al. High-Throughput Phenotyping of Canopy Height in Cool-Season Crops Using Sensing Techniques[J]. Agronomy Journal, 2021, 113(4): 3269-3280. doi: 10.1002/agj2.20632
|
ANDRADE S M, TEODORO L P R, BAIO F H R, et al. High-Throughput Phenotyping of Soybean Genotypes under Base Saturation Stress Conditions[J]. Journal of Agronomy and Crop Science, 2021, 207(5): 814-822. doi: 10.1111/jac.12513
|
HUGHES D P, SALATHE M. An Open Access Repository of Images on Plant Health to Enable the Development of Mobile Disease Diagnostics[EB/OL]. (2016-04-12)[2023-10-28]. http://arxiv.org/abs/1511.08060.
|
WU J H, ZHENG H, ZHAO B, et al. Large-Scale Dataset for Going Deeper in Image Understanding[C] //2019 IEEE International Conference on Multimedia and Expo (ICME). Shanghai, China. IEEE, 2019: 1480-1485.
|
KAGGLE. Plant Pathology 2020—Fgvc7[DB/OL]. (2020-05-27)[2023-10-28]. http://www.kaggle.com/c/plant-pathology-2020-fgvc7.
|
KAGGLE. Herbarium 2021—Half-Earth Challenge-Fgvc8[DB/OL]. (2021-05-27)[2023-10-28]. https://www.kaggle.com/c/herbarium-2021-fgvc8.
|
SINGH D, JAIN N, JAIN P, et al. PlantDoc: A Dataset for Visual Plant Disease Detection[C] //Proceedings of the 7th ACM IKDD CoDS and 25th COMAD. Hyderabad, India. ACM, 2020: 249-253.
|
SETHY P K, BARPANDA N K, RATH A K, et al. Deep Feature Based Rice Leaf Disease Identification Using Support Vector Machine[J]. Computers and Electronics in Agriculture, 2020, 175: 105527. doi: 10.1016/j.compag.2020.105527
|
GOYAL L, SHARMA C M, SINGH A, et al. Leaf and Spike Wheat Disease Detection & Classification Using an Improved Deep Convolutional Architecture[J]. Informatics in Medicine Unlocked, 2021, 25: 100642. doi: 10.1016/j.imu.2021.100642
|
GETACHEW H. Wheat Leaf Dataset[DB/OL]. (2021-08-03)[2023-10-28]. https://data.mendeley.com/datasets/wgd66f8n6h/1.
|
CHALLENGE I W. CGIAR Computer Vision for Crop Disease[DB/OL]. (2020-12-20)[2023-10-28]. https://www.kaggle.com/datasets/shadabhussain/cgiar-computer-vision-for-crop-disease.
|
周长建, 宋佳, 向文胜. 基于人工智能的作物病害识别研究进展[J]. 植物保护学报, 2022, 49(1): 316-324.
|
THAKUR P S, KHANNA P, SHEOREY T, et al. Trends in Vision-Based Machine Learning Techniques for Plant Disease Identification: A Systematic Review[J]. Expert Systems with Applications, 2022, 208: 118117. doi: 10.1016/j.eswa.2022.118117
|
DIAO Z H, ZHENG A P, WU Y Y. Shape Feature Extraction of Wheat Leaf Disease Based on Invariant Moment Theory[C] //International Conference on Computer and Computing Technologies in Agriculture (CCTA 2011). Berlin, Heidelberg: Springer, 2012: 168-173.
|
XU G L, ZHANG F L, SHAH S G, et al. Use of Leaf Color Images to Identify Nitrogen and Potassium Deficient Tomatoes[J]. Pattern Recognition Letters, 2011, 32(11): 1584-1590. doi: 10.1016/j.patrec.2011.04.020
|
VISHNOI V K, KUMAR K, KUMAR B. A Comprehensive Study of Feature Extraction Techniques for Plant Leaf Disease Detection[J]. Multimedia Tools and Applications, 2022, 81(1): 367-419. doi: 10.1007/s11042-021-11375-0
|
ALI H, LALI M I, NAWAZ M Z, et al. Symptom Based Automated Detection of Citrus Diseases Using Color Histogram and Textural Descriptors[J]. Computers and Electronics in Agriculture, 2017, 138: 92-104. doi: 10.1016/j.compag.2017.04.008
|
NARMILAN A, GONZALEZ F, SALGADOE A, et al. Detection of White Leaf Disease in Sugarcane Using Machine Learning Techniques over UAV Multispectral Images[J]. Drones, 2022, 6(9): 230. doi: 10.3390/drones6090230
|
WAN L, LI H, LI C S, et al. Hyperspectral Sensing of Plant Diseases: Principle and Methods[J]. Agronomy, 2022, 12(6): 1451. doi: 10.3390/agronomy12061451
|
GITELSON A A, KAUFMAN Y J, STARK R, et al. Novel Algorithms for Remote Estimation of Vegetation Fraction[J]. Remote Sensing of Environment, 2002, 80(1): 76-87. doi: 10.1016/S0034-4257(01)00289-9
|
ROKNI K, MUSA T A. Normalized Difference Vegetation Change Index: A Technique for Detecting Vegetation Changes Using Landsat Imagery[J]. Catena, 2019, 178: 59-63. doi: 10.1016/j.catena.2019.03.007
|
GITELSON A A. Remote Estimation of Crop Fractional Vegetation Cover: The Use of Noise Equivalent as an Indicator of Performance of Vegetation Indices[J]. International Journal of Remote Sensing, 2013, 34(17): 6054-6066. doi: 10.1080/01431161.2013.793868
|
HUNT E R Jr, DAUGHTRY C S T, EITEL J U H, et al. Remote Sensing Leaf Chlorophyll Content Using a Visible Band Index[J]. Agronomy Journal, 2011, 103(4): 1090-1099. doi: 10.2134/agronj2010.0395
|
THOMAS S, KUSKA M T, BOHNENKAMP D, et al. Benefits of Hyperspectral Imaging for Plant Disease Detection and Plant Protection: A Technical Perspective[J]. Journal of Plant Diseases and Protection, 2018, 125(1): 5-20. doi: 10.1007/s41348-017-0124-6
|
YAO Z F, LEI Y, HE D J. Identification of Powdery Mildew and Stripe Rust in Wheat Using Hyperspectral Imaging[J]. Spectroscopy and Spectral Analysis, 2019, 39(3): 969-976.
|
ZHANG J C, TIAN Y Y, YAN L J, et al. Diagnosing the Symptoms of Sheath Blight Disease on Rice Stalk with an In-situ Hyperspectral Imaging Technique[J]. Biosystems Engineering, 2021, 209: 94-105. doi: 10.1016/j.biosystemseng.2021.06.020
|
LIAKOS K G, BUSATO P, MOSHOU D, et al. Machine Learning in Agriculture: A Review[J]. Sensors, 2018, 18(8): 2674. doi: 10.3390/s18082674
|
DOMINGUES T, BRANDÃO T, FERREIRA J C. Machine Learning for Detection and Prediction of Crop Diseases and Pests: A Comprehensive Survey[J]. Agriculture, 2022, 12(9): 1350. doi: 10.3390/agriculture12091350
|
ALMOUJAHED M B, RANGARAJAN A K, WHETTON R L, et al. Detection of Fusarium Head Blight in Wheat under Field Conditions Using a Hyperspectral Camera and Machine Learning[J]. Computers and Electronics in Agriculture, 2022, 203: 107456. doi: 10.1016/j.compag.2022.107456
|
SHARIF M, KHAN M A, IQBAL Z, et al. Detection and Classification of Citrus Diseases in Agriculture Based on Optimized Weighted Segmentation and Feature Selection[J]. Computers and Electronics in Agriculture, 2018, 150: 220-234. doi: 10.1016/j.compag.2018.04.023
|
FRANKE J, MENZ G. Multi-Temporal Wheat Disease Detection by Multi-Spectral Remote Sensing[J]. Precision Agriculture, 2007, 8(3): 161-172. doi: 10.1007/s11119-007-9036-y
|
CAMARGO A, SMITH J S. Image Pattern Classification for the Identification of Disease Causing Agents in Plants[J]. Computers and Electronics in Agriculture, 2009, 66(2): 121-125. doi: 10.1016/j.compag.2009.01.003
|
CALDERÓN R, NAVAS-CORTÉS J A, ZARCO-TEJADA P J. Early Detection and Quantification of Verticillium Wilt in Olive Using Hyperspectral and Thermal Imagery over Large Areas[J]. Remote Sensing, 2015, 7(5): 5584-5610. doi: 10.3390/rs70505584
|
QIN F, LIU D X, SUN B D, et al. Identification of Alfalfa Leaf Diseases Using Image Recognition Technology[J]. PLoS One, 2016, 11(12): e0168274. doi: 10.1371/journal.pone.0168274
|
NAGASUBRAMANIAN K, JONES S, SARKAR S, et al. Hyperspectral Band Selection Using Genetic Algorithm and Support Vector Machines for Early Identification of Charcoal Rot Disease in Soybean Stems[J]. Plant Methods, 2018, 14: 86. doi: 10.1186/s13007-018-0349-9
|
OMRANI E, KHOSHNEVISAN B, SHAMSHIRBAND S, et al. Potential of Radial Basis Function-Based Support Vector Regression for Apple Disease Detection[J]. Measurement, 2014, 55: 512-519. doi: 10.1016/j.measurement.2014.05.033
|
ABDULRIDHA J, AMPATZIDIS Y, ROBERTS P, et al. Detecting Powdery Mildew Disease in Squash at Different Stages Using UAV-Based Hyperspectral Imaging and Artificial Intelligence[J]. Biosystems Engineering, 2020, 197: 135-148. doi: 10.1016/j.biosystemseng.2020.07.001
|
LECUN Y, BENGIO Y, HINTON G. Deep Learning[J]. Nature, 2015, 521: 436-444. doi: 10.1038/nature14539
|
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-Based Learning Applied to Document Recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791
|
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet Classification with Deep Convolutional Neural Networks[J]. Communications of the ACM, 2017, 60(6): 84-90. doi: 10.1145/3065386
|
SZEGEDY C, LIU W, JIA Y Q, et al. Going Deeper with Convolutions[C] //2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA. IEEE, 2015: 1-9.
|
SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-Scale Image Recognition[EB/OL]. (2015-04-10)[2023-10-28]. http://arxiv.org/abs/1409.1556.
|
HE K M, ZHANG X Y, REN S Q, et al. Deep Residual Learning for Image Recognition[C] //2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA. IEEE, 2016: 770-778.
|
MOHANTY S P, HUGHES D P, SALATHÉ M. Using Deep Learning for Image-Based Plant Disease Detection[J]. Frontiers in Plant Science, 2016, 7: 1419. doi: 10.3389/fpls.2016.01419
|
ÖZBıLGE E, ULUKÖK M K, TOYGAR Ö, et al. Tomato Disease Recognition Using a Compact Convolutional Neural Network[J]. IEEE Access, 2022, 10: 77213-77224. doi: 10.1109/ACCESS.2022.3192428
|
HUANG X B, CHEN A B, ZHOU G X, et al. Tomato Leaf Disease Detection System Based on FC-SNDPN[J]. Multimedia Tools and Applications, 2023, 82(2): 2121-2144. doi: 10.1007/s11042-021-11790-3
|
XU W C, YAN Z. Research on Strawberry Disease Diagnosis Based on Improved Residual Network Recognition Model[J]. Mathematical Problems in Engineering, 2022, 2022: 6431942.
|
REDMON J, DIVVALA S, GIRSHICK R, et al. You Only Look Once: Unified, Real-Time Object Detection[C] //2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA. IEEE, 2016: 779-788.
|
LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single Shot MultiBox Detector[C] //14th European Conference on Computer Vision (ECCV 2016). Amsterdam, Netherlands. Cham: Springer, 2016: 21-37.
|
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation[C] //2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA. IEEE, 2014: 580-587.
|
GIRSHICK R. Fast R-CNN[C]. //2015 IEEE Conference on Computer Vision (ICCV). Santiago, Chile. IEEE, 2015: 1440-1448.
|
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
|
LIU J, WANG X W. Tomato Diseases and Pests Detection Based on Improved Yolo V3 Convolutional Neural Network[J]. Frontiers in Plant Science, 2020, 11: 898. doi: 10.3389/fpls.2020.00898
|
WANG Y W, WANG Y J, ZHAO J B. MGA-YOLO: A Lightweight One-Stage Network for Apple Leaf Disease Detection[J]. Frontiers in Plant Science, 2022, 13: 927424. doi: 10.3389/fpls.2022.927424
|
ZHANG K K, WU Q F, CHEN Y P. Detecting Soybean Leaf Disease from Synthetic Image Using Multi-Feature Fusion Faster R-CNN[J]. Computers and Electronics in Agriculture, 2021, 183: 106064. doi: 10.1016/j.compag.2021.106064
|
LIU J, WANG X W. Early Recognition of Tomato Gray Leaf Spot Disease Based on MobileNetv2-YOLOv3 Model[J]. Plant Methods, 2020, 16: 83. doi: 10.1186/s13007-020-00624-2
|
XUE Z Y, XU R J, BAI D, et al. YOLO-Tea: A Tea Disease Detection Model Improved by YOLOv5[J]. Forests, 2023, 14(2): 415. doi: 10.3390/f14020415
|
SUN H N, XU H W, LIU B, et al. MEAN-SSD: A Novel Real-Time Detector for Apple Leaf Diseases Using Improved Light-Weight Convolutional Neural Networks[J]. Computers and Electronics in Agriculture, 2021, 189: 106379. doi: 10.1016/j.compag.2021.106379
|
ANANDHAN K, SINGH A S. Detection of Paddy Crops Diseases and Early Diagnosis Using Faster Regional Convolutional Neural Networks[C] //2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). Greater Noida, India. IEEE, 2021: 898-902.
|
BARI B S, ISLAM M N, RASHID M, et al. A Real-Time Approach of Diagnosing Rice Leaf Disease Using Deep Learning-Based Faster R-CNN Framework[J]. PeerJ Computer Science, 2021, 7: e432. doi: 10.7717/peerj-cs.432
|
OZGUVEN M M, ADEM K. Automatic Detection and Classification of Leaf Spot Disease in Sugar Beet Using Deep Learning Algorithms[J]. Physica A: Statistical Mechanics and its Applications, 2019, 535: 122537. doi: 10.1016/j.physa.2019.122537
|
SHELHAMER E, LONG J, DARRELL T. Fully Convolutional Networks for Semantic Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. doi: 10.1109/TPAMI.2016.2572683
|
HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 386-397. doi: 10.1109/TPAMI.2018.2844175
|
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is All You Need[C] //Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017). Long Beach, CA, USA. Curran Associates Inc., 2017: 5998-6008.
|
GUO Y F, LAN Y T, CHEN X D. CST: Convolutional Swin Transformer for Detecting the Degree and Types of Plant Diseases[J]. Computers and Electronics in Agriculture, 2022, 202: 107407. doi: 10.1016/j.compag.2022.107407
|
QIAN X F, ZHANG C Q, CHEN L, et al. Deep Learning-Based Identification of Maize Leaf Diseases is Improved by an Attention Mechanism: Self-Attention[J]. Frontiers in Plant Science, 2022, 13: 864486. doi: 10.3389/fpls.2022.864486
|
CHEN W R, CHEN J D, ZEB A, et al. Mobile Convolution Neural Network for the Recognition of Potato Leaf Disease Images[J]. Multimedia Tools and Applications, 2022, 81(15): 20797-20816. doi: 10.1007/s11042-022-12620-w
|
BI C K, WANG J M, DUAN Y L, et al. MobileNet Based Apple Leaf Diseases Identification[J]. Mobile Networks and Applications, 2022, 27(1): 172-180. doi: 10.1007/s11036-020-01640-1
|
GU M S, LI K C, LI Z W, et al. Recognition of Crop Diseases Based on Depthwise Separable Convolution in Edge Computing[J]. Sensors, 2020, 20(15): 4091. doi: 10.3390/s20154091
|
GU J X, WANG Z H, KUEN J, et al. Recent Advances in Convolutional Neural Networks[J]. Pattern Recognition, 2018, 77: 354-377. doi: 10.1016/j.patcog.2017.10.013
|
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative Adversarial Networks[J]. Communications of the ACM, 2020, 63(11): 139-144. doi: 10.1145/3422622
|
ZHUANG F Z, QI Z Y, DUAN K Y, et al. A Comprehensive Survey on Transfer Learning[J]. Proceedings of the IEEE, 2021, 109(1): 43-76. doi: 10.1109/JPROC.2020.3004555
|
CHEN J D, CHEN J X, ZHANG D F, et al. Using Deep Transfer Learning for Image-Based Plant Disease Identification[J]. Computers and Electronics in Agriculture, 2020, 173: 105393. doi: 10.1016/j.compag.2020.105393
|
SUBRAMANIAN M, SHANMUGAVADIVEL K, NANDHINI P S. On Fine-Tuning Deep Learning Models Using Transfer Learning and Hyper-Parameters Optimization for Disease Identification in Maize Leaves[J]. Neural Computing and Applications, 2022, 34(16): 13951-13968. doi: 10.1007/s00521-022-07246-w
|
THANGARAJ R, ANANDAMURUGAN S, KALIAPPAN V K. Automated Tomato Leaf Disease Classification Using Transfer Learning-Based Deep Convolution Neural Network[J]. Journal of Plant Diseases and Protection, 2021, 128(1): 73-86. doi: 10.1007/s41348-020-00403-0
|