CULVERD C PIPAN D C. The Biology of Caves and Other Subterranean Habitats [M]. New York: Oxford University Press, 2019.
|
SOARES D, NIEMILLER M L. Sensory Adaptations of Fishes to Subterranean Environments [J]. BioScience, 2013, 63(4): 274-283. doi: 10.1525/bio.2013.63.4.7
|
AMES A, LI Y Y, HEHER E C, et al. Energy Metabolism of Rabbit Retina as Related to Function: High Cost of Na+ Transport [J]. The Journal of Neuroscience, 1992, 12(3): 840-853. doi: 10.1523/JNEUROSCI.12-03-00840.1992
|
NIVEN J E. Evolution: Convergent Eye Losses in Fishy Circumstances [J]. Current Biology, 2008, 18(1): 27-29. doi: 10.1016/j.cub.2007.11.020
|
NIVEN J E, LAUGHLIN S B. Energy Limitation as a Selective Pressure on the Evolution of Sensory Systems [J]. The Journal of Experimental Biology, 2008, 211(11): 1792-1804. doi: 10.1242/jeb.017574
|
WONG-RILEY M T T. Energy Metabolism of the Visual System [J]. Eye and Brain, 2010(2): 99-116.
|
LAUGHLIN S B, DE RUYTER VAN STEVENINCK R R, ANDERSON J C. The Metabolic Cost of Neural Information [J]. Nature Neuroscience, 1998, 1(1): 36-41. doi: 10.1038/236
|
YOSHIZAWA M, JEFFERY W R, VAN NETTEN S M, et al. The Sensitivity of Lateral Line Receptors and Their Role in the Behavior of Mexican Blind Cavefish (Astyanax mexicanus) [J]. The Journal of Experimental Biology, 2014, 217(6): 886-895.
|
HINAUX H, DEVOS L, BLIN M, et al. Sensory Evolution in Blind Cavefish is Driven by Early Embryonic Events during Gastrulation and Neurulation [J]. Development, 2016, 143(23): 4521-4532. doi: 10.1242/dev.141291
|
MYRBERG A A. Sound Communication and Interception in Fishes [M]//TAVOLGA W N, POPPER A N, FAY R R. Hearing and Sound Communication in Fishes. New York: Springer, 1981.
|
URICK R J. Principles of Underwater Sound [M]. New York: Peninsula Publishing, 1983.
|
ROGERS P H, COX M. Underwater Sound as a Biological Stimulus [M]//ATEMA J, FAY R R, POPPER A N, et al. Sensory Biology of Aquatic Animals. New York: Springer, 1988.
|
NIEMILLER M L, HIGGS D M, SOARES D. Evidence for Hearing Loss in Amblyopsid Cavefishes [J]. Biology Letters, 2013, 9(3): 20130104. doi: 10.1098/rsbl.2013.0104
|
LADICH F, SCHULZ-MIRBACH T. Diversity in Fish Auditory Systems: One of the Riddles of Sensory Biology [J]. Frontiers in Ecology and Evolution, 2016, 4(28): 1-26.
|
FAY R R, WILBER L A. Hearing in Vertebrates: A Psychophysics Databook [J]. The Journal of the Acoustical Society of America, 1989, 86(5): 2044. doi: 10.1121/1.398550
|
POPPER A N, FAY R R. The Auditory Periphery in Fishes [M]//FAY R R, POPPER A N. Comparative Hearing: Fish and Amphibians. New York: Springer, 1999: 43-100.
|
ALEXANDER R M. Physical Aspects of Swimbladder Function [J]. Biological Reviews, 1966, 41(1): 141-176. doi: 10.1111/j.1469-185X.1966.tb01542.x
|
LECHNER W, LADICH F. Size Matters: Diversity in Swimbladders and Weberian Ossicles Affects Hearing in Catfishes [J]. The Journal of Experimental Biology, 2008, 211(10): 1681-1689. doi: 10.1242/jeb.016436
|
ZEBEDIN A, LADICH F. Does the Hearing Sensitivity in Thorny Catfishes Depend on Swim Bladder Morphology? [J]. PLoS One, 2013, 8(6): e67049. doi: 10.1371/journal.pone.0067049
|
TAVOLGA W N, WODINSKY J. Auditory Capacities in Fishes: Pure Tone Thresholds in Nine Species of Marine Teleosts [J]. Bulletin of the American Museum of Natural History, 1963, 126: 177-240.
|
COOMBS S, POPPER A N. Hearing Differences among Hawaiian Squirrelfish (Family Holocentridae) Related to Differences in the Peripheral Auditory System [J]. Journal of Comparative Physiology, 1979, 132(3): 203-207. doi: 10.1007/BF00614491
|
POPPER A N, FAY R R. Rethinking Sound Detection by Fishes [J]. Hearing Research, 2011, 273(1-2): 25-36. doi: 10.1016/j.heares.2009.12.023
|
SCHULZ-MIRBACH T, METSCHER B, LADICH F. Relationship between Swim Bladder Morphology and Hearing Abilities —A Case Study on Asian and African Cichlids [J]. PLoS One, 2012, 7(8): e42292. doi: 10.1371/journal.pone.0042292
|
RAMCHARITAR J U, HIGGS D M, POPPER A N. Audition in Sciaenid Fishes with Different Swim Bladder-Inner Ear Configurations [J]. The Journal of the Acoustical Society of America, 2006, 119(1): 439-443. doi: 10.1121/1.2139068
|
KENYON T N, LADICH F, YAN H Y. A Comparative Study of Hearing Ability in Fishes: The Auditory Brainstem Response Approach [J]. Journal of Comparative Physiology A, 1998, 182(3): 307-318. doi: 10.1007/s003590050181
|
KOJIMA T, ITO H, KOMADA T, et al. Measurements of Auditory Sensitivity in Common Carp Cyprinus carpio by the Auditory Brainstem Response Technique and Cardiac Conditioning Method [J]. Fisheries Science, 2005, 71(1): 95-100. doi: 10.1111/j.1444-2906.2005.00935.x
|
LADICH F, FAY R R. Auditory Evoked Potential Audiometry in Fish [J]. Reviews in Fish Biology and Fisheries, 2013, 23(3): 317-364. doi: 10.1007/s11160-012-9297-z
|
BHANDIWAD A A, ZEDDIES D G, RAIBLE D W, et al. Auditory Sensitivity of Larval Zebrafish (Danio rerio) Measured Using a Behavioral Prepulse Inhibition Assay [J]. The Journal of Experimental Biology, 2013, 216(18): 3504-3513. doi: 10.1242/jeb.087635
|
NIIHORI M, PLATTO T, IGARASHI S, et al. Zebrafish Swimming Behavior as a Biomarker for Ototoxicity-Induced Hair Cell Damage: A High-Throughput Drug Development Platform Targeting Hearing Loss [J]. Translational Research, 2015, 166(5): 440-450. doi: 10.1016/j.trsl.2015.05.002
|
LIU X Y, LIN J, ZHANG Y L, et al. Sound Shock Response in Larval Zebrafish: A Convenient and High-Throughput Assessment of Auditory Function [J]. Neurotoxicology and Teratology, 2018, 66: 1-7. doi: 10.1016/j.ntt.2018.01.003
|
BANG P I, YELICK P C, MALICKI J J, et al. High-Throughput Behavioral Screening Method for Detecting Auditory Response Defects in Zebrafish [J]. Journal of Neuroscience Methods, 2002, 118(2): 177-187. doi: 10.1016/S0165-0270(02)00118-8
|
GIBB A C, SWANSON B O, WESP H, et al. Development of the Escape Response in Teleost Fishes: Do Ontogenetic Changes Enable Improved Performance? [J]. Physiological and Biochemical Zoology: PBZ, 2006, 79(1): 7-19. doi: 10.1086/498192
|
COLWILL R M, CRETON R. Imaging Escape and Avoidance Behavior in Zebrafish Larvae [J]. Reviews in the Neurosciences, 2011, 22(1): 63-73. doi: 10.1515/rns.2011.008
|
文浩龙, 杨平恒, 华茂松, 等. 岩溶地下河硝酸盐转化与来源对比研究[J]. 西南大学学报(自然科学版), 2023, 45(5): 172-184.
|
武云飞吴翠珍. 青藏高原鱼类[M]. 成都: 四川科学技术出版社, 1982.
|
WENH M, LIU E S, YAN S S, et al. Conserving Karst Cavefish Diversity in Southwest China [J]. Biological Conservation, 2022, 273: 109680. doi: 10.1016/j.biocon.2022.109680
|
陈银瑞. 我国洞穴鱼类的研究[J]. 生物科学信息, 1990, 2(3): 117-119.
|
闫咏柳. 高原鳅属鱼类(鲤形目条鳅科)洞穴类群的起源演化研究[D]. 重庆: 西南大学, 2017.
|
SHI C C, YAO M, LV X, et al. Body and Organ Metabolic Rates of a Cave Fish, Triplophysa rosa: Influence of Light and Ontogenetic Variation [J]. Journal of Comparative Physiology B, Biochemical, Systemic, and Environmental Physiology, 2018, 188(6): 947-955. doi: 10.1007/s00360-018-1178-x
|
ZHAO Q Y, SHAO F, LI Y P, et al. Novel Genome Sequence of Chinese Cavefish (Triplophysa rosa) Reveals Pervasive Relaxation of Natural Selection in Cavefish Genomes [J]. Molecular Ecology, 2022, 31(22): 5831-5845. doi: 10.1111/mec.16700
|
朱松泉. 中国条鳅亚科鱼类的鳔和骨质鳔囊的研究[J]. 水生生物学报, 1986, 10(2): 136-143.
|
何德奎, 陈咏霞, 陈毅峰. 高原鳅属Triplophysa鱼类的分子系统发育和生物地理学研究[J]. 自然科学进展, 2006, 16(11): 1395-1404. doi: 10.3321/j.issn:1002-008X.2006.11.005
|
CHAMBERS J M. Chapter 4-Linear Models [M]//HASTIE T J. Statistical Models in S. London: Chapman & Hall, 1992.
|
DELIGNETTE-MULLER M L, DUTANG C. Fitdistrplus: An R Package for Fitting Distributions [J]. Journal of Statistical Software, 2015, 64(4): 1-34.
|
BATES D, MÄCHLER M, BOLKER B, et al. Fitting Linear Mixed-Effects Models Using Lme4 [J]. Journal of Statistical Software, 2015, 67(1): 1-48.
|
CHAMBERS J M, FREENY A E, HEIBERGER R M. Chapter 5-Analysis of Variance: Designed Experiments [M]//HASTIE T J. Statistical Models in S. London: Chapman & Hall, 1992.
|
YANDELL B S. Practical Data Analysis for Designed Experiments [M]. New York: Routledge, 1997.
|
MURRELL P. R Graphics [M]. New York: Chapman and Hall/CRC, 2005.
|
REVELL L J. Phytools: An R Package for Phylogenetic Comparative Biology (and Other Things) [J]. Methods in Ecology and Evolution, 2012, 3(2): 217-223. doi: 10.1111/j.2041-210X.2011.00169.x
|
FRECKLETON R P, HARVEY P H, PAGEL M. Phylogenetic Analysis and Comparative Data: A Test and Review of Evidence [J]. The American Naturalist, 2002, 160(6): 712-726. doi: 10.1086/343873
|
ZHANG J H, LONG R, JING Y Y, et al. Loss of Behavioral Stress Response in Blind Cavefish Reduces Energy Expenditure [J]. Zoological Research, 2023, 44(4): 678-692. doi: 10.24272/j.issn.2095-8137.2022.354
|
VILLANUEVA R A M, CHEN Z J. Ggplot2: Elegant Graphics for Data Analysis [J]. Measurement: Interdisciplinary Research and Perspectives, 2019, 17(3): 160-167. doi: 10.1080/15366367.2019.1565254
|
POULSON T L. Cave Adaptation in Amblyopsid Fishes [J]. American Midland Naturalist, 1963, 70(2): 257-290. doi: 10.2307/2423056
|
MONTGOMERY J C, COOMBS S, BAKER C F. The Mechanosensory Lateral Line System of the Hypogean Form of Astyanax fasciatus [J]. Environmental Biology of Fishes, 2001, 62(1): 87-96.
|
PARZEFALL J. Behavioural Ecology of Cave-Dwelling Fishes [M]//PITCHER T J. The Behaviour of Teleost Fishes. New York: Springer, 1986.
|
YOSHIZAWA M, YAMAMOTO Y, O'QUIN K E, et al. Evolution of an Adaptive Behavior and Its Sensory Receptors Promotes Eye Regression in Blind Cavefish [J]. BMC Biology, 2012(10): 108.
|
BIBLIOWICZ J, ALIÉ A, ESPINASA L, et al. Differences in Chemosensory Response between Eyed and Eyeless Astyanax Mexicanus of the Rio Subterráneo Cave [J]. EvoDevo, 2013, 4(1): 25. doi: 10.1186/2041-9139-4-25
|
MALDONADO E, RANGEL-HUERTA E, RODRIGUEZ-SALAZAR E, et al. Subterranean Life: Behavior, Metabolic, and Some Other Adaptations of Astyanax Cavefish [J]. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2020, 334(7-8): 463-473. doi: 10.1002/jez.b.22948
|
PIERCE A D. Acoustics: An Introduction to Its Physical Principles and Applications [M]. New York: Springer, 2019.
|
WEBB J F, SMITH W L. The Laterophysic Connection in Chaetodontid Butterflyfish: Morphological Variation and Speculations on Sensory Function [J]. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 2000, 355(1401): 1125-1129. doi: 10.1098/rstb.2000.0652
|