ANGUS D C, VAN DER POLL T. Severe Sepsis and Septic Shock[J]. The New England Journal of Medicine, 2013, 369(9): 840-851. doi: 10.1056/NEJMra1208623
|
BOS L D J, WARE L B. Acute Respiratory Distress Syndrome: Causes, Pathophysiology, and Phenotypes[J]. The Lancet, 2022, 400(10358): 1145-1156. doi: 10.1016/S0140-6736(22)01485-4
|
XU H K, SHENG S Y, LUO W W, et al. Acute Respiratory Distress Syndrome Heterogeneity and the Septic ARDS Subgroup[J]. Frontiers in Immunology, 2023(14): 1277161.
|
张书娟, 王勇, 代晓明, 等. 脓毒症相关急性呼吸窘迫综合征的危险因素及预后分析[J]. 中国急救医学, 2022, 42(4): 331-336.
|
MOAZED F, HENDRICKSON C, JAUREGUI A, et al. Cigarette Smoke Exposure and Acute Respiratory Distress Syndrome in Sepsis Epidemiology, Clinical Features, and Biologic Markers[J]. American journal of respiratory and critical care medicine, 2022, 205(8): 927-35. doi: 10.1164/rccm.202105-1098OC
|
SEETHALA R R, HOU P C, AISIKU I P, et al. Early Risk Factors and the Role of Fluid Administration in Developing Acute Respiratory Distress Syndrome in Septic Patients[J]. Annals of Intensive Care, 2017, 7(1): 11. doi: 10.1186/s13613-017-0233-1
|
KNAUS W A, DRAPER E A, WAGNER D P, et al. APACHE Ⅱ: A Severity of Disease Classification System[J]. Critical Care Medicine, 1985, 13(10): 818-829. doi: 10.1097/00003246-198510000-00009
|
VINCENT J L, MORENO R, TAKALA J, et al. The SOFA (Sepsis-related Organ Failure Assessment) Score to Describe Organ Dysfunction/Failure[J]. Intensive Care Medicine, 1996, 22(7): 707-710. doi: 10.1007/BF01709751
|
TSANTES A, TSANGARIS I, KOPTERIDES P, et al. The Role of Procalcitonin and IL-6 in Discriminating Between Septic and Non-Septic Causes of ALI/ARDS: A Prospective Observational Study[J]. Clinical Chemistry and Laboratory Medicine, 2013, 51(7): 1535-1542.
|
WARE L B, KOYAMA T, ZHAO Z G, et al. Biomarkers of Lung Epithelial Injury and Inflammation Distinguish Severe Sepsis Patients with Acute Respiratory Distress Syndrome[J]. Critical Care, 2013, 17(5): R253. doi: 10.1186/cc13080
|
LUO D H, WAN X, LIU J M, et al. Optimally Estimating the Sample Mean from the Sample Size, Median, Mid-Range, and/or Mid-quartile Range[J]. Statistical Methods in Medical Research, 2018, 27(6): 1785-1805. doi: 10.1177/0962280216669183
|
WAN X, WANG W Q, LIU J M, et al. Estimating the Sample Mean and Standard Deviation from the Sample Size, Median, Range and/or Interquartile Range[J]. BMC Medical Research Methodology, 2014(14): 135.
|
BARDAJÍ-CARRILLO M, MARTÍN-FERNÁNDEZ M, LÓPEZ-HERRERO R, et al. Post-operative Sepsis-induced Acute Respiratory Distress Syndrome: Risk Factors for a Life-threatening Complication[J]. Frontiers in Medicine, 2024(11): 1338542.
|
CHEN W F, LIU L L, YANG J H, et al. microRNA-146b Correlates with Decreased Acute Respiratory Distress Syndrome Risk, Reduced Disease Severity, and Lower 28-day Mortality in Sepsis Patients[J]. Journal of Clinical Laboratory Analysis, 2020, 34(12): e23510. doi: 10.1002/jcla.23510
|
FAN Y H, YE Z M, TANG Y. Serum HMGB1 and Soluble Urokinase Plasminogen Activator Receptor Levels Aid Diagnosis and Prognosis Prediction of Sepsis with Acute Respiratory Distress Syndrome[J]. Biomarkers in Medicine, 2023, 17(4): 231-239. doi: 10.2217/bmm-2022-0899
|
HUANG C M, LI J J, WEI W K. Clinical Significance of Platelet Mononuclear Cell Aggregates in Patients with Sepsis and Acute Respiratory Distress Syndrome[J]. World Journal of Clinical Cases, 2024, 12(5): 966-972. doi: 10.12998/wjcc.v12.i5.966
|
LI S L, ZHAO D N, CUI J, et al. Prevalence, Potential Risk Factors and Mortality Rates of Acute Respiratory Distress Syndrome in Chinese Patients with Sepsis[J]. Journal of International Medical Research, 2020, 48(2): 300060519895659. doi: 10.1177/0300060519895659
|
LIU Y J, PENG H, GUI F. Long Noncoding Plasmacytoma Variant Translocation 1 Facilitates the Surveillance of Acute Respiratory Distress Syndrome and Mortality Prediction in Sepsis[J]. Biomarkers in Medicine, 2021, 15(6): 401-412. doi: 10.2217/bmm-2020-0506
|
MA Y T, ZHU C R, MA X C, et al. Risk Factors of Acute Respiratory Distress Syndrome in Sepsis Caused by Intra-Abdominal Infections: A Retrospective Study[J]. Surgery, 2024, 175(5): 1432-1438.
|
NAM H, JANG S H, HWANG Y I, et al. Nonpulmonary Risk Factors of Acute Respiratory Distress Syndrome in Patients with Septic Bacteraemia[J]. The Korean Journal of Internal Medicine, 2019, 34(1): 116-124.
|
SHI Y Q, WANG L, YU S H, et al. Risk Factors for Acute Respiratory Distress Syndrome in Sepsis Patients: A Retrospective Study from a Tertiary Hospital in China[J]. BMC Pulmonary Medicine, 2022, 22(1): 238.
|
SHI W T, ZHU W, YU J N, et al. LncRNA HOTTIP as a Diagnostic Biomarker for Acute Respiratory Distress Syndrome in Patients with Sepsis and to Predict the Short-term Clinical Outcome: A Case-control Study[J]. BMC Anesthesiology, 2024, 24(1): 30.
|
SINGH K, HARIHARAN S, VENTOUR D, et al. Epidemiology and Management Trends of Patients with Sepsis and Septic Shock in the Intensive Care Unit: A Prospective Trial in the Caribbean[J]. Cureus, 2020, 12(10): e10980.
|
SUN C Z, XIE Y P, ZHU C C, et al. Serum Mrp 8/14 as a Potential Biomarker for Predicting the Occurrence of Acute Respiratory Distress Syndrome Induced by Sepsis: A Retrospective Controlled Study[J]. Journal of Inflammation Research, 2024(17): 2939-2949.
|
VILLAR J, HERRÁN-MONGE R, GONZÁLEZ-HIGUERAS E, et al. Clinical and Biological Markers for Predicting ARDS and Outcome in Septic Patients[J]. Scientific Reports, 2021, 11(1): 22702.
|
WANG Y M, ZHENG Y J, CHEN Y, et al. Effects of Fluid Balance on Prognosis of Acute Respiratory Distress Syndrome Patients Secondary to Sepsis[J]. World Journal of Emergency Medicine, 2020, 11(4): 216-222.
|
WANG D H, JIA H M, ZHENG X, et al. Attributable Mortality of ARDS among Critically Ⅲ Patients with Sepsis: A Multicenter, Retrospective Cohort Study[J]. BMC Pulmonary Medicine, 2024, 24(1): 110.
|
WU X L, CHEN D, YU L. The Value of Circulating Long Non-coding RNA Maternally Expressed Gene 3 as a Predictor of Higher Acute Respiratory Distress Syndrome Risk and 28-Day Mortality in Sepsis Patients[J]. Journal of Clinical Laboratory Analysis, 2020, 34(11): e23488.
|
YANG Y K, YANG L, LIU Z Q, et al. Long Noncoding RNA NEAT 1 and Its Target microRNA-125a in Sepsis: Correlation with Acute Respiratory Distress Syndrome Risk, Biochemical Indexes, Disease Severity, and 28-Day Mortality[J]. Journal of Clinical Laboratory Analysis, 2020, 34(12): e23509.
|
YANG P, IFFRIG E, HARRIS F, et al. Serial Measurements of Protein Biomarkers in Sepsis-induced Acute Respiratory Distress Syndrome[J]. Critical Care Explorations, 2022, 4(10): e0780.
|
YANG Q, ZHANG X J, LUO L, et al. Clinical Application of Serum NLRP3 on the Diagnosis and Prognosis of Sepsis Patients Complicated with Acute Respiratory Distress Syndrome[J]. Frontiers in Immunology, 2023(14): 1205132.
|
代旭亮. 急诊脓毒症患者呼吸窘迫综合征发生的影响因素[J]. 现代临床医学, 2022, 48(2): 107-108, 110.
|
高甜甜, 徐蔚, 李明樾, 等. 毛细血管渗漏指数联合MPV/PLT对腹腔脓毒症患者并发ARDS的预测价值[J]. 医学研究杂志, 2023, 52(12): 150-154.
|
葛建辉. 脓毒症患者并发ARDS的早期危险因素分析[J]. 浙江医学, 2017, 39(20): 1789-1792.
|
郭小芙, 席与斌, 陈刚. 血清HMGB1、ESM-1水平对脓毒症并发ARDS的预测价值[J]. 山东医药, 2020, 60(31): 28-31.
|
雷翔慧, 李涛. 血管生成素-2、瓜氨酸联合降钙素原对脓毒症合并急性呼吸窘迫综合征诊断及预后的评估[J]. 南昌大学学报(医学版), 2022, 62(1): 43-47.
|
李金兰, 张丽中, 樊柳汝, 等. 血管生成素-2及可溶性糖基化终末产物受体在脓毒症相关急性呼吸窘迫综合征发病中的作用[J]. 实用医学杂志, 2022, 38(24): 3095-3099, 3105.
|
梁希泉, 陈尚华, 刘琴. 血清高迁移率族蛋白B1检测在脓毒症合并ARDS患者中的临床监测效果研究[J]. 国际检验医学杂志, 2020, 41(6): 659-662.
|
刘海梅, 龙晓凤, 郑真真, 等. 血清HSP70、sCD74对脓毒症并发急性呼吸窘迫综合征的预测价值[J]. 山东医药, 2021, 61(22): 14-17.
|
王蒲春, 刘德志, 范新, 等. 血浆长链非编码RNA THRIL、NEAT1表达水平与脓毒症并发急性呼吸窘迫综合征的关系[J]. 临床急诊杂志, 2021, 22(8): 534-540.
|
魏旭升, 李小芳, 黄彪, 等. miR-146b对脓毒症并发ARDS的预测及与预后的关系分析[J]. 国际检验医学杂志, 2022, 43(11): 1329-1333.
|
徐宁, 贾娟, 李莉, 等. 血清miRNA-125b联合miRNA-133a早期诊断脓毒症合并急性呼吸窘迫综合征的价值[J]. 中国临床研究, 2023, 36(4): 537-541.
|
俞凡, 赵林军, 吴锦鸿, 等. 血清沉默信息调节因子2相关酶1、血管紧张素转换酶2水平与脓毒症相关急性呼吸窘迫综合征的相关性[J]. 中国医刊, 2024, 59(2): 213-217.
|
湛振业, 蔡海荣, 梁兴民, 等. 脓毒症并发急性呼吸窘迫综合征的危险因素分析[J]. 山西医药杂志, 2021, 50(20): 2896-2898.
|
赵春玲, 李玉叶, 王秋义, 等. 脓毒症患者并发急性呼吸窘迫综合征的风险预测列线图模型建立[J]. 中华危重病急救医学, 2023, 35(7): 714-718.
|
赵春玲, 袁红岩, 尤丕聪, 等. 肺损伤预测评分联合生物学标志物对脓毒症并发急性呼吸窘迫综合征的预测价值[J]. 中国实用内科杂志, 2023, 43(9): 740-743.
|
中国医师协会急诊医师分会, 中国研究型医院学会休克与脓毒症专业委员会. 中国脓毒症/脓毒性休克急诊治疗指南(2018)[J]. 感染·炎症·修复, 2019, 20(1): 3-22.
|
RUDD K E, JOHNSON S C, AGESA K M, et al. Global, Regional, and National Sepsis Incidence and Mortality, 1990-2017: Analysis for the Global Burden of Disease Study[J]. The Lancet, 2020, 395(10219): 200-211.
|
MARTÍN S, PÉREZ A, ALDECOA C. Sepsis and Immunosenescence in the Elderly Patient: A Review[J]. Frontiers in Medicine, 2017(4): 20.
|
SCHULIGA M, READ J, KNIGHT D A. Ageing Mechanisms that Ccontribute to Tissue Remodeling in Lung Disease[J]. Ageing Research Reviews, 2021(70): 101405.
|
HUANG X, ZHAO M. High Expression of Long Non-Coding RNA MALAT1 Correlates with Raised Acute Respiratory Distress Syndrome Risk, Disease Severity, and Increased Mortality in Sepstic Patients[J]. International Journal of Clinical and Experimental Pathology, 2019, 12(5): 1877-1887.
|
BARNES P J. Inflammatory Mechanisms in Patients with Chronic Obstructive Pulmonary Disease[J]. Journal of Allergy and Clinical Immunology, 2016, 138(1): 16-27.
|
JACOBS M L, DAGGETT W M, CIVETTE J M, et al. Acute Pancreatitis: Analysis of Factors Influencing Survival[J]. Annals of Surgery, 1977, 185(1): 43-51.
|
江浩, 郑贸根, 朱超男, 等. APACHEⅡ、ISS、SOFA评分对创伤继发ARDS严重程度及预后的预测价值比较[J]. 临床肺科杂志, 2018, 23(11): 2074-2078.
|
YANG K, FAN M, WANG X, et al. Lactate Promotes Macrophage HMGB1 Lactylation, Acetylation, and Exosomal Release in Polymicrobial Sepsis[J]. Cell Death & Differentiation, 2022, 29(1): 133-146.
|
RIEDEMANN N C, GUO R F, HOLLMANN T J, et al. Regulatory Role of C5a in LPS-induced IL-6 Production by Neutrophils During Sepsis[J]. The FASEB Journal, 2004, 18(2): 1-16.
|
朱钰珊, 彭学容, 范苏苏, 等. 炎症与氧化应激在急性肺损伤中的作用研究进展[J]. 生物医学, 2024, 14(1): 48-55.
|
叶海燕, 王学斌, 巨轩, 等. 血浆ESM-1对脓毒症ARDS发生预测价值的研究[J]. 同济大学学报(医学版), 2019, 40(6): 853-858.
|