WANG G C, SU Y, SHU L J. One-Day-Ahead Daily Power Forecasting of Photovoltaic Systems Based on Partial Functional Linear Regression Models[J]. Renewable Energy, 2016, 96: 469-478. doi: 10.1016/j.renene.2016.04.089
LI Y T, HE Y, SU Y, et al. Forecasting the Daily Power Output of a Grid-Connected Photovoltaic System Based on Multivariate Adaptive Regression Splines[J]. Applied Energy, 2016, 180: 392-401. doi: 10.1016/j.apenergy.2016.07.052
孙凡, 李兴隆, 肖强, 等. 渝东南山地风能资源及风切变研究[J]. 西南大学学报(自然科学版), 2023, 45(4): 226-230.
CHEN J F, WANG W M, HUANG C M. Analysis of an Adaptive Time-Series Autoregressive Moving-Average (ARMA) Model for Short-Term Load Forecasting[J]. Electric Power Systems Research, 1995, 34(3): 187-196. doi: 10.1016/0378-7796(95)00977-1
JI W, CHEE K C. Prediction of Hourly Solar Radiation Using a Novel Hybrid Model of ARMA and TDNN[J]. Solar Energy, 2011, 85(5): 808-817. doi: 10.1016/j.solener.2011.01.013
SABER A Y, ALAM A K M R. Short Term Load Forecasting Using Multiple Linear Regression for Big Data[C] //2017 IEEE Symposium Series on Computational Intelligence (SSCI), November 27-December 1, 2017, Honolulu, HI, USA. IEEE, 2017: 1-6.
LEVA S, DOLARA A, GRIMACCIA F, et al. Analysis and Validation of 24 Hours Ahead Neural Network Forecasting of Photovoltaic Output Power[J]. Mathematics and Computers in Simulation, 2017, 131: 88-100. doi: 10.1016/j.matcom.2015.05.010
GABOITAOLELWE J, ZUNGERU A M, YAHYA A, et al. Machine Learning Based Solar Photovoltaic Power Forecasting: A Review and Comparison[J]. IEEE Access, 2023, 11: 40820-40845. doi: 10.1109/ACCESS.2023.3270041
ABUELLA M, CHOWDHURY B. Random Forest Ensemble of Support Vector Regression Models for Solar Power Forecasting[C] //2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), April 23-26, 2017, Washington, DC, USA. IEEE, 2017: 1-5.
ROY N, TRIPATHY P, DE S C, et al. Day-Ahead Solar Power Generation Forecasting Using LSTM and Random Forest Methods for North Eastern Region of India[C] //2022 22nd National Power Systems Conference (NPSC), December 17-19, 2022, New Delhi, India. IEEE, 2022: 854-859.
U.S. National Renewable Energy Laboratory. Solar Power Data for Integration Studies[DB/OL]. (2006-12-31)[2024-03-15]. https://www.nrel.gov/grid/solar-power-data.html .
COLAK I, YESILBUDAK M, GENC N, et al. Multi-Period Prediction of Solar Radiation Using ARMA and ARIMA Models[C] //2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), December 9-11, 2015, Miami, FL, USA. IEEE, 2015: 1045-1049.
CHEN X B, XIE B, ZHANG P F, et al. Research on Wind and Solar Power Generation Forecasting Based on SARIMA-LSTM Model[C] //2023 3rd International Conference on New Energy and Power Engineering (ICNEPE), November 24-26, 2023, Huzhou, China. IEEE, 2023: 695-699.
VANDEVENTER W, JAMEI E, THIRUNAVUKKARASU G S, et al. Short-Term PV Power Forecasting Using Hybrid GASVM Technique[J]. Renewable Energy, 2019, 140: 367-379. doi: 10.1016/j.renene.2019.02.087
PAN M Z, LI C, GAO R, et al. Photovoltaic Power Forecasting Based on a Support Vector Machine with Improved Ant Colony Optimization[J]. Journal of Cleaner Production, 2020, 277: 123948. doi: 10.1016/j.jclepro.2020.123948
ZHOU M J, LI X F, ZHONG Z Y. Research on Photovoltaic Power Generation Power Prediction Based on RF-XGBoost Model[C] //2023 IEEE 6th International Conference on Information Systems and Computer Aided Education (ICISCAE), September 23-25, 2023, Dalian, China. IEEE, 2023: 544-549.
IZZATILLAEV J, YUSUPOV Z. Short-Term Load Forecasting in Grid-Connected Microgrid[C] //2019 7th International Istanbul Smart Grids and Cities Congress and Fair (ICSG), April 25-26, 2019, Istanbul, Turkey. IEEE, 2019: 71-75.
KONG W C, DONG Z Y, JIA Y W, et al. Short-Term Residential Load Forecasting Based on LSTM Recurrent Neural Network[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 841-851. doi: 10.1109/TSG.2017.2753802
GAO M M, LI J J, HONG F, et al. Day-Ahead Power Forecasting in a Large-Scale Photovoltaic Plant Based on Weather Classification Using LSTM[J]. Energy, 2019, 187: 115838. doi: 10.1016/j.energy.2019.07.168
TAN M, YUAN S P, LI S H, et al. Ultra-Short-Term Industrial Power Demand Forecasting Using LSTM Based Hybrid Ensemble Learning[J]. IEEE Transactions on Power Systems, 2020, 35(4): 2937-2948. doi: 10.1109/TPWRS.2019.2963109
SONG H Y, HUANG X G, LI D Y, et al. Short-Term Prediction Method of Distributed Photovoltaic Power Generation Based on LSTM Network[C] //2023 3rd International Conference on Intelligent Power and Systems (ICIPS), October 20-22, 2023, Shenzhen, China. IEEE, 2023: 348-353.
谈玲, 康瑞星, 夏景明, 等. 融合多源异构气象数据的光伏功率预测模型[J]. 电子与信息学报, 2024, 46(2): 503-517.
DENG Z F, WANG B B, XU Y L, et al. Multi-Scale Convolutional Neural Network with Time-Cognition for Multi-Step Short-Term Load Forecasting[J]. IEEE Access, 2019, 7: 88058-88071.
TZIOLIS G, LIVERA A, MONTES-ROMERO J, et al. Direct Short-Term Net Load Forecasting Based on Machine Learning Principles for Solar-Integrated Microgrids[J]. IEEE Access, 2023, 11: 102038-102049.
WANG Z Y, WANG Y R, SRINIVASAN R S. A Novel Ensemble Learning Approach to Support Building Energy Use Prediction[J]. Energy and Buildings, 2018, 159: 109-122.
RUBASINGHE O, ZHANG X N, CHAU T K, et al. A Novel Sequence to Sequence Data Modelling Based CNN-LSTM Algorithm for Three Years Ahead Monthly Peak Load Forecasting[J]. IEEE Transactions on Power Systems, 2024, 39(1): 1932-1947.
CHEN T Q, GUESTRIN C. XGBoost: A Scalable Tree Boosting System[C] //Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 2016: 785-794.
刘翠玲, 胡聪, 王鹏, 等. 基于营销大数据的电力客户多维度信用评价模型研究[J]. 西南大学学报(自然科学版), 2022, 44(6): 198-208.
ZHEN Z, LIU J M, ZHANG Z Y, et al. Deep Learning Based Surface Irradiance Mapping Model for Solar PV Power Forecasting Using Sky Image[J]. IEEE Transactions on Industry Applications, 2020, 56(4): 3385-3396.
宋毅, 张晗奕, 孙丰, 等. PPNet: 基于预先预测的降雨短时预测模型[J]. 电子与信息学报, 2024, 46(2): 492-502.
HEWAGE P, BEHERA A, TROVATI M, et al. Temporal Convolutional Neural (TCN) Network for an Effective Weather Forecasting Using Time-Series Data from the Local Weather Station[J]. Soft Computing, 2020, 24(21): 16453-16482.
LIANG C, WU D, HE Y, et al. MMA: Multi-Metric-Autoencoder for Analyzing High-Dimensional and Incomplete Data[M] //Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, 2023: 3-19.
WU D, SUN B, SHANG M S. Hyperparameter Learning for Deep Learning-Based Recommender Systems[J]. IEEE Transactions on Services Computing, 2023, 16(4): 2699-2712.