尼尔·布雷迪(Nyle C. Brady), 雷·韦尔(Ray R. Weil). 土壤学与生活[M]. 李保国, 徐建明, 等, 译. 北京: 科学出版社, 2019.
|
李航, 杨刚. 基础土壤学研究的方法论思考: 基于土壤化学的视角[J]. 土壤学报, 2017, 54(4): 819-826.
|
TAKÁCS D, SZABÓ T, JAMNIK A, et al. Colloidal Interactions of Microplastic Particles with Anionic Clays in Electrolyte Solutions[J]. Langmuir, 2023, 39(36): 12835-12844. doi: 10.1021/acs.langmuir.3c01700
|
LI X Y, CAO Z Y, DU Y P, et al. Multi-Metal Contaminant Mobilizations by Natural Colloids and Nanoparticles in Paddy Soils during Reduction and Reoxidation[J]. Journal of Hazardous Materials, 2024, 461: 132684. doi: 10.1016/j.jhazmat.2023.132684
|
胡纪华, 杨兆禧, 郑忠. 胶体与界面化学[M]. 广州: 华南理工大学出版社, 1997.
|
WU S W, ZHANG Y, TAN Q L, et al. Biochar Is Superior to Lime in Improving Acidic Soil Properties and Fruit Quality of Satsuma Mandarin[J]. Science of The Total Environment, 2020, 714: 136722. doi: 10.1016/j.scitotenv.2020.136722
|
ZHANG Y, CHEN Y S, WESTERHOFF P, et al. Impact of Natural Organic Matter and Divalent Cations on the Stability of Aqueous Nanoparticles[J]. Water Research, 2009, 43(17): 4249-4257. doi: 10.1016/j.watres.2009.06.005
|
ZHANG Y K, TIAN R, TANG J, et al. Specific Ion Effect of H+ on Variably Charged Soil Colloid Aggregation[J]. Pedosphere, 2020, 30(6): 844-852. doi: 10.1016/S1002-0160(19)60818-0
|
WEI X Y, PAN D Q, XU Z, et al. Colloidal Stability and Correlated Migration of Illite in the Aquatic Environment: The Roles of pH, Temperature, Multiple Cations and Humic Acid[J]. Science of The Total Environment, 2021, 768: 144174. doi: 10.1016/j.scitotenv.2020.144174
|
SUN Y L, PAN D Q, WEI X Y, et al. Insight into the Stability and Correlated Transport of Kaolinite Colloid: Effect of pH, Electrolytes and Humic Substances[J]. Environmental Pollution, 2020, 266: 115189. doi: 10.1016/j.envpol.2020.115189
|
何甜甜, 王静, 符云鹏, 等. 等碳量添加秸秆和生物炭对土壤呼吸及微生物生物量碳氮的影响[J]. 环境科学, 2021, 42(1): 450-458.
|
马群, 刘铭, 周玉玲, 等. 生物炭与有机无机肥配施对土壤质量的影响[J]. 西南大学学报(自然科学版), 2024, 46(7): 115-126.
|
JEFFERY S, VERHEIJEN F G A, VAN DER VELDE M, et al. A Quantitative Review of the Effects of Biochar Application to Soils on Crop Productivity Using Meta-Analysis[J]. Agriculture, Ecosystems & Environment, 2011, 144(1): 175-187.
|
STEINER C, TEIXEIRA W G, LEHMANN J, et al. Long Term Effects of Manure, Charcoal and Mineral Fertilization on Crop Production and Fertility on a Highly Weathered Central Amazonian Upland Soil[J]. Plant and Soil, 2007, 291(1): 275-290. doi: 10.1007/s11104-007-9193-9
|
PETTER F A, MADARI B E, DA SILVA M A S, et al. Soil Fertility and Upland Rice Yield after Biochar Application in the Cerrado[J]. Pesquisa Agropecuária Brasileira, 2012, 47(5): 699-706. doi: 10.1590/S0100-204X2012000500010
|
李鸿, 史东梅, 盘礼东. 生物炭与化肥配施对紫色土坡耕地侵蚀性耕层土壤水分及入渗特性的影响[J]. 西南大学学报(自然科学版), 2024, 46(4): 121-132.
|
CHEN X P, DUAN M L, ZHOU B B, et al. Effects of Biochar Nanoparticles as a Soil Amendment on the Structure and Hydraulic Characteristics of a Sandy Loam Soil[J]. Soil Use and Management, 2022, 38(1): 836-849. doi: 10.1111/sum.12740
|
CHURCHMAN G J. Is the Geological Concept of Clay Minerals Appropriate for Soil Science?A Literature-Based and Philosophical Analysis[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2010, 35(15-18): 927-940. doi: 10.1016/j.pce.2010.05.009
|
LI Q Y, TANG Y, HE X H, et al. Approach to Theoretical Estimation of the Activation Energy of Particle Aggregation Taking Ionic Nonclassic Polarization into Account[J]. AIP Advances, 2015, 5(10): 107218. doi: 10.1063/1.4934594
|
LI Q R, ZHANG X, MAO M, et al. Carbon Content Determines the Aggregation of Biochar Colloids from Various Feedstocks[J]. Science of The Total Environment, 2023, 880: 163313. doi: 10.1016/j.scitotenv.2023.163313
|
TANG Z, CHENG T. Stability and Aggregation of Nanoscale Titanium Dioxide Particle (nTiO2): Effect of Cation Valence, Humic Acid, and Clay Colloids[J]. Chemosphere, 2018, 192: 51-58. doi: 10.1016/j.chemosphere.2017.10.105
|
LI L, WANG L, LIU Q C. Effects of Salinity and pH on Clay Colloid Aggregation in Ion-Adsorption-Type Rare Earth Ore Suspensions by Light Scattering Analysis[J]. Minerals, 2023, 13(1): 38.
|
CRISTINA PINNA M, SALIS A, MONDUZZI M, et al. Hofmeister Series: The Hydrolytic Activity of Aspergillus Niger Lipase Depends on Specific Anion Effects[J]. The Journal of Physical Chemistry B, 2005, 109(12): 5406-5408. doi: 10.1021/jp050574w
|
LO NOSTRO P, NINHAM B W, CARRETTI E, et al. Specific Anion Effects in Artemia Salina[J]. Chemosphere, 2015, 135: 335-340. doi: 10.1016/j.chemosphere.2015.04.080
|
NINHAM B W, PASHLEY R M, NOSTRO P L. Surface Forces: Changing Concepts and Complexity with Dissolved Gas, Bubbles, Salt and Heat[J]. Current Opinion in Colloid & Interface Science, 2017, 27: 25-32.
|
唐嘉, 朱曦, 刘秀婷, 等. 2∶1和1∶1型黏土矿物胶体凝聚中Hofmeister效应的比较研究[J]. 土壤学报, 2020, 57(2): 381-391.
|
KIM J, DONG H L, SEABAUGH J, et al. Role of Microbes in the Smectite-to-Illite Reaction[J]. Science, 2004, 303(5659): 830-832. doi: 10.1126/science.1093245
|
ZHANG Y K, HE A Z, TIAN R, et al. Co-Aggregation of Mixture Components of Montmorillonite, Kaolinite and Humus[J]. European Journal of Soil Science, 2022, 73(1): e13158. doi: 10.1111/ejss.13158
|
李琪瑞. 果木枝条生物炭纳米颗粒与土壤胶体的异质凝聚过程与机理[D]. 杨凌: 西北农林科技大学, 2021.
|
GAO X D, LI S, LIU X M, et al. The Effects of NO3- and Cl- on Negatively Charged Clay Aggregation[J]. Soil and Tillage Research, 2019, 186: 242-248. doi: 10.1016/j.still.2018.10.025
|