汪海燕, 黎建辉, 杨风雷. 支持向量机理论及算法研究综述[J]. 计算机应用研究, 2014, 31(5): 1281-1286. doi: 10.3969/j.issn.1001-3695.2014.05.001
|
李春祥, 殷潇. 基于小波支持向量机的非高斯空间风压内外插预测[J]. 上海交通大学学报, 2018, 52(11): 1516-1523.
|
GAO W, ZHOU Z H. On the Doubt about Margin Explanation of Boosting[J]. Artificial Intelligence, 2013, 203: 1-18. doi: 10.1016/j.artint.2013.07.002
|
WANG L W, SUGIYAMA M, JING Z X, et al. A Refined Margin Analysis for Boosting Algorithms via Equilibrium Margin[J]. Journal of Machine Learning Research, 2011, 12: 1835-1863.
|
ZHANG T, ZHOU Z H. Large Margin Distribution Machine[C] //Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 313-322.
|
武柏芸. 支持矩阵机I0/1-ADMM算法研究[D]. 北京: 北京交通大学, 2021.
|
潘海洋, 徐海锋, 郑近德, 等. 基于双加权不平衡矩阵分类器的机械故障诊断方法[J]. 机械工程学报, 2024, 60(3): 170-180.
|
PIRSIAVASH H, RAMANAN D, FOWLKES C. Bilinear Classifiers for Visual Recognition[C] //23rd International Conference on Neural Information Processing Systems. New York: ACM, 2009.
|
WOLF L, JHUANG H, HAZAN T. Modeling Appearances with Low-Rank SVM[C] //2007 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2007.
|
LUO L, XIE Y, ZHANG Z, et al. Support Matrix Machines[J]Journal of Machine Learning Research, 2015, 37: 938-947.
|
伍毅, 盛丽, 潘海洋, 等. 基于迁移最小二乘支持矩阵机的滚动轴承故障诊断方法[J]. 振动与冲击, 2022, 41(21): 53-59.
|
潘海洋. 基于辛几何模态分解和支持矩阵机的机械故障诊断方法[D]. 长沙: 湖南大学, 2019.
|
YANG J R, FAN S Y, ZHANG L B, et al. A Low-Rank Support Tensor Machine for Multi-Classification[J]. Information Sciences, 2025, 688: 121398. doi: 10.1016/j.ins.2024.121398
|
PAN H, XU H, ZHENG J, et al. A Semi-Supervised Matrixized Graph Embedding Machine for Roller Bearing Fault Diagnosis Under Few-Labeled Samples[J]. IEEE Transactions on Industrial Informatics, 2024, 20(1): 854-863. doi: 10.1109/TII.2023.3265525
|
PAN H, XU H, ZHENG J, et al. Non-Parallel Bounded Support Matrix Machine and Its Application in Roller Bearing Fault Diagnosis[J]. Information Sciences, 2023, 624: 395-415. doi: 10.1016/j.ins.2022.12.090
|
YANG J, FAN S, LIU L, et al. Optimal Margin Distribution Matrix Machine[J]. Expert Systems with Applications, 2024, 240: 122497. doi: 10.1016/j.eswa.2023.122497
|
张法滢, 吕莉, 韩龙哲, 等. 直觉模糊的结构化最小二乘孪生支持向量机[J]. 应用科学学报, 2024, 42(2): 350-363. doi: 10.3969/j.issn.0255-8297.2024.02.015
|
张翔, 肖小玲, 徐光祐. 模糊支持向量机中隶属度的确定与分析[J]. 中国图象图形学报, 2006, 11(8): 1188-1192. doi: 10.3969/j.issn.1006-8961.2006.08.022
|
孙晓霞, 刘晓霞, 谢倩茹. 模糊C-均值(FCM)聚类算法的实现[J]. 计算机应用与软件, 2008, 25(3): 48-50.
|
DONG D H, FENG M Y, KURTHS J, et al. Fuzzy Large Margin Distribution Machine for Classification[J]. International Journal of Machine Learning and Cybernetics, 2024, 15(5): 1891-1905. doi: 10.1007/s13042-023-02004-3
|
JIN Q, FAN S, DONG D, et al. Fuzzy Twin Bounded Large Margin Distribution Machines[C] // 5th Chinese Conference on Pattern Recognition and Computer Vision(PRCV). Berlin: Springer, 2022.
|
PAN H Y, XU H F, ZHENG J D, et al. Multi-Class Fuzzy Support Matrix Machine for Classification in Roller Bearing Fault Diagnosis[J]. Advanced Engineering Informatics, 2022, 51: 101445. doi: 10.1016/j.aei.2021.101445
|
ATLA A, TADA R, SHENG V, et al. Sensitivity of Different Machine Learning Algorithms to Noise[J]. Journal of Computing Sciences in Colleges, 2011, 26(5): 96-103.
|
LIN C F, WANG S D. Fuzzy Support Vector Machines[J]. IEEE Trans Neural Netw, 2002, 13(2): 464-471. doi: 10.1109/72.991432
|
CHOI Y, UH Y, YOO J, et al. Stargan v2: Diverse Image Synthesis for Multiple Domains[C] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2020. New York: IEEE Press, 2020.
|