KÖNNEKE M, BERNHARD A E, DE LA TORRE J R, et al. Isolation of an Autotrophic Ammonia-oxidizing Marine Archaeon [J]. Nature, 2005, 437(7058): 543-546. doi: 10.1038/nature03911
BOCK E, WAGNER M. Oxidation of Inorganic Nitrogen Compounds as an Energy Source [J]. Springer New York, 2006, 7(16): 83-118.
DIMITRI K K, SEDLACEK C J, LEBEDEVA E V, et al. Kinetic Analysis of a Complete Nitrifier Reveals an Oligotrophic Lifestyle [J]. Nature, 2017, 549(7671): 269-272. doi: 10.1038/nature23679
DAIMS H, LEBEDEVA E V, PJEVAC P, et al. Complete Nitrification by Nitrospira Bacteria [J]. Nature, 2015, 528(7583): 504-509. doi: 10.1038/nature16461
VAN KESSEL M A H J, SPETH D R, ALBERTSEN M, et al. Complete Nitrification by a Single Microorganism [J]. Nature, 2015, 528(7583): 555-559. doi: 10.1038/nature16459
COSTA E, PÉREZ J, KREFT J U. Why is Metabolic Labour Divided in Nitrification? [J]. Trends in Microbiology, 2006, 14(5): 213-219. doi: 10.1016/j.tim.2006.03.006
PJEVAC P, SCHAUBERGER C, POGHOSYAN L, et al. AmoA-targeted Polymerase Chain Reaction Primers for the Specific Detection and Quantification of Comammox Nitrospira in the Environment [J]. Frontiers in Microbiology, 2017, 8: 1508. doi: 10.3389/fmicb.2017.01508
WANG X X, LU L, ZHOU X, et al. Niche Differentiation of Comammox Nitrospira in the Mudflat and Reclaimed Agricultural Soils along the North Branch of Yangtze River Estuary [J]. Frontiers in Microbiology, 2021(11): 618287.
LIU H Y, HU H W, HUANG X, et al. Canonical Ammonia Oxidizers, rather than Comammox Nitrospira, Dominated Autotrophic Nitrification during the Mineralization of Organic Substances in Two Paddy Soils [J]. Soil Biology and Biochemistry, 2021, 156: 108192. doi: 10.1016/j.soilbio.2021.108192
HU H W, HE J Z. Comammox-A Newly Discovered Nitrification Process in the Terrestrial Nitrogen Cycle [J]. Journal of Soils and Sediments, 2017, 17(12): 2709-2717. doi: 10.1007/s11368-017-1851-9
WANG Z H, CAO Y Q, ZHU-BARKER X, et al. Comammox Nitrospira Clade B Contributes to Nitrification in Soil [J]. Soil Biology and Biochemistry, 2019, 135: 392-395. doi: 10.1016/j.soilbio.2019.06.004
王智慧, 蒋先军. 宏基因组技术研究泥岩母质发育的三种不同pH紫色土硝化微生物群落演变规律[J]. 微生物学报, 2021, 61(7): 1933-1944.
DE VRIES F T, THÉBAULT E, LIIRI M, et al. Soil Food Web Properties Explain Ecosystem Services across European Land Use Systems [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(35): 14296-14301.
刘天琳, 任佳琪, 王天佑, 等. 中性紫色水稻土硝化作用中细菌和古菌的相对贡献[J]. 土壤通报, 2018, 49(5): 1091-1096.
张晓楠, 陆玉芳, 杨婷, 等. 水稻生物硝化抑制剂1, 9-癸二醇的定量方法优化[J]. 土壤, 2020, 52(6): 1152-1157.
KÖGEL-KNABNER I, AMELUNG W, CAO Z H, et al. Biogeochemistry of Paddy Soils [J]. Geoderma, 2010, 157(1-2): 1-14. doi: 10.1016/j.geoderma.2010.03.009
DAI S Y, LIU Q, ZHAO J, et al. Ecological Niche Differentiation of Ammonia-oxidising Archaea and Bacteria in Acidic Soils Due to Land Use Change [J]. Soil Research, 2018, 56(1): 71. doi: 10.1071/SR16356
YING J Y, ZHANG L M, HE J Z. Putative Ammonia-oxidizing Bacteria and Archaea in an Acidic Red Soil with Different Land Utilization Patterns [J]. Environmental Microbiology Reports, 2010, 2(2): 304-312. doi: 10.1111/j.1758-2229.2009.00130.x
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科学技术出版社, 2000.
ATTARD E, POLY F, COMMEAUX C, et al. Shifts between Nitrospira- and Nitrobacter-like Nitrite Oxidizers Underlie the Response of Soil Potential Nitrite Oxidation to Changes in Tillage Practices [J]. Environmental Microbiology, 2010, 12(2): 315-326. doi: 10.1111/j.1462-2920.2009.02070.x
王梅, 王智慧, 石孝均, 等. 长期不同施肥量对全程氨氧化细菌丰度的影响[J]. 环境科学, 2018, 39(10): 4727-4734.
HE S S, LI Y W, MU H B, et al. Ammonium Concentration Determines Differential Growth of Comammox and Canonical Ammonia-oxidizing Prokaryotes in Soil Microcosms [J]. Applied Soil Ecology, 2021, 157: 103776. doi: 10.1016/j.apsoil.2020.103776
CAMEJO P Y, SANTO DOMINGO J, MCMAHON K D, et al. Genome-enabled Insights into the Ecophysiology of the Comammox Bacterium Candidatus Nitrospira Nitrosa [J]. mSystems, 2017, 2(5): e00059.
PALOMO A, PEDERSEN A G, JANE FOWLER S, et al. Comparative Genomics Sheds Light on Niche Differentiation and the Evolutionary History of Comammox Nitrospira [J]. The ISME Journal, 2018, 12(7): 1779-1793. doi: 10.1038/s41396-018-0083-3
HU H W, XU Z H, HE J Z. Ammonia-oxidizing Archaea Play a Predominant Role in Acid Soil Nitrification [M] //Advances in Agronomy. Amsterdam: Elsevier, 2014: 261-302.
PROSSER J I, NICOL G W. Archaeal and Bacterial Ammonia-oxidisers in Soil: The Quest for Niche Specialisation and Differentiation [J]. Trends in Microbiology, 2012, 20(11): 523-531. doi: 10.1016/j.tim.2012.08.001
BARTELME R P, MCLELLAN S L, NEWTON R J. Freshwater Recirculating Aquaculture System Operations Drive Biofilter Bacterial Community Shifts around a Stable Nitrifying Consortium of Ammonia-oxidizing Archaea and Comammox Nitrospira [J]. Frontiers in Microbiology, 2017(8): 101.
FOWLER S J, PALOMO A, DECHESNE A, et al. Comammox Nitrospira are Abundant Ammonia Oxidizers in Diverse Groundwater-fed Rapid Sand Filter Communities [J]. Environmental Microbiology, 2018, 20(3): 1002-1015. doi: 10.1111/1462-2920.14033
XU S Y, WANG B Z, LI Y, et al. Ubiquity, Diversity, and Activity of Comammox Nitrospira in Agricultural Soils [J]. Science of the Total Environment, 2020, 706: 135684. doi: 10.1016/j.scitotenv.2019.135684
SANTORO A E, FRANCIS C A, DE SIEYES N R, et al. Shifts in the Relative Abundance of Ammonia-oxidizing Bacteria and Archaea across Physicochemical Gradients in a Subterranean Estuary [J]. Environmental Microbiology, 2008, 10(4): 1068-1079. doi: 10.1111/j.1462-2920.2007.01547.x
LI C Y, HU H W, CHEN Q L, et al. Niche Specialization of Comammox Nitrospira Clade a in Terrestrial Ecosystems [J]. Soil Biology and Biochemistry, 2021, 156: 108231. doi: 10.1016/j.soilbio.2021.108231
WANG X M, WANG S Y, JIANG Y Y, et al. Comammox Bacterial Abundance, Activity, and Contribution in Agricultural Rhizosphere Soils [J]. Science of the Total Environment, 2020, 727: 138563. doi: 10.1016/j.scitotenv.2020.138563
LIN S S, HERNANDEZ-RAMIREZ G. Nitrous Oxide Emissions from Manured Soils as a Function of Various Nitrification Inhibitor Rates and Soil Moisture Contents [J]. Science of the Total Environment, 2020, 738: 139669. doi: 10.1016/j.scitotenv.2020.139669
LIU S, ZHANG J H, WANG Y C, et al. Effects of Dam Building on Niche Differentiation of Comammox Nitrospira in the Main Stream of the Three Gorges Reservoir Area [J]. Water, 2022, 14(24): 4014. doi: 10.3390/w14244014
ZHOU S M, ZHANG M, ZHANG K K, et al. Effects of Reduced Nitrogen and Suitable Soil Moisture on Wheat (Triticum aestivum L. ) Rhizosphere Soil Microbiological, Biochemical Properties and Yield in the Huanghuai Plain, China [J]. Journal of Integrative Agriculture, 2020, 19(1): 234-250. doi: 10.1016/S2095-3119(19)62697-3
WANG H, YANG J P, YANG S H, et al. Effect of a 10 ℃-Elevated Temperature under Different Water Contents on the Microbial Community in a Tea Orchard Soil [J]. European Journal of Soil Biology, 2014, 62: 113-120. doi: 10.1016/j.ejsobi.2014.03.005
BLAGODATSKY S, SMITH P. Soil Physics Meets Soil Biology: Towards Better Mechanistic Prediction of Greenhouse Gas Emissions from Soil [J]. Soil Biology and Biochemistry, 2012, 47: 78-92. doi: 10.1016/j.soilbio.2011.12.015
唐瑞杰, 胡煜杰, 赵彩悦, 等. 不同水分条件下土地利用方式对我国热带地区土壤硝化过程及NO和N2O排放的影响[J]. 环境科学, 2022, 43(11): 5159-5168.
刘若萱, 张丽梅, 白刃, 等. 模拟条件下土壤硝化作用及硝化微生物对不同水分梯度的响应[J]. 土壤学报, 2015, 52(2): 415-422.
SUN X X, ZHAO J, ZHOU X, et al. Salt Tolerance-based Niche Differentiation of Soil Ammonia Oxidizers [J]. The ISME Journal, 2022, 16(2): 412-422. doi: 10.1038/s41396-021-01079-6
BAI X, HU X J, LIU J J, et al. Ammonia Oxidizing Bacteria Dominate Soil Nitrification under Different Fertilization Regimes in Black Soils of North East China [J]. European Journal of Soil Biology, 2022, 111: 103410. doi: 10.1016/j.ejsobi.2022.103410
杨东伟, 章明奎. 水田改果园后土壤性质的变化及其特征[J]. 生态学报, 2015, 35(11): 3825-3835.
MEDRIANO C A, CHAN A, DE SOTTO R, et al. Different Types of Land Use Influence Soil Physiochemical Properties, the Abundance of Nitrifying Bacteria, and Microbial Interactions in Tropical Urban Soil [J]. Science of the Total Environment, 2023, 869: 161722. doi: 10.1016/j.scitotenv.2023.161722
SRIKANTHASAMY T, LELOUP J, N'DRI A B, et al. Contrasting Effects of Grasses and Trees on Microbial N-Cycling in an African Humid Savanna [J]. Soil Biology and Biochemistry, 2018, 117: 153-163. doi: 10.1016/j.soilbio.2017.11.016
宿少锋, 王小燕, 林之盼, 等. 热带地区6种植被类型土壤微生物功能多样性特征[J]. 云南农业大学学报(自然科学), 2022, 37(3): 505-514.
颜彩缤, 赵亚, 李少卡, 等. 不同间作模式对幼龄菠萝蜜土壤酶活性和真菌群落的影响[J]. 中国南方果树, 2024, 53(6): 92-99.
刘小玉, 付登强, 余凤玉. 解淀粉芽孢杆菌ck-05对槟榔生长及土壤微生态的影响[J]. 中国南方果树, 2023, 52(6): 141-145.
SUBBARAO G V, NAKAHARA K, HURTADO M P, et al. Evidence for Biological Nitrification Inhibition in Brachiaria Pastures [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(41): 17302-17307.