YANG L, LIU W X, ZHU D, et al. Application of Biosolids Drives the Diversity of Antibiotic Resistance Genes in Soil and Lettuce at Harvest[J]. Soil Biology and Biochemistry, 2018, 122: 131-140. doi: 10.1016/j.soilbio.2018.04.017
|
WANG M, XIE X Y, WANG M Z, et al. The Bacterial Microbiota in Florfenicol Contaminated Soils: The Antibiotic Resistome and the Nitrogen Cycle[J]. Environmental Pollution, 2020, 259: 113901. doi: 10.1016/j.envpol.2019.113901
|
TISEO K, HUBER L, GILBERT M, et al. Global Trends in Antimicrobial Use in Food Animals from 2017 to 2030[J]. Antibiotics, 2020, 9(12): 918. doi: 10.3390/antibiotics9120918
|
ZHAO L X, PAN Z, SUN B L, et al. Responses of Soil Microbial Communities to Concentration Gradients of Antibiotic Residues in Typical Greenhouse Vegetable Soils[J]. Science of The Total Environment, 2023, 855: 158587. doi: 10.1016/j.scitotenv.2022.158587
|
GAO J P, WEI C, MO T J, et al. Effects of Enrofloxacin on Soil Nitrification and Denitrification: A Microbiological Study[J]. Environmental Technology & Innovation, 2023, 32: 103415.
|
LIN H, JIN D F, FREITAG T E, et al. A Compositional Shift in the Soil Microbiome Induced by Tetracycline, Sulfamonomethoxine and Ciprofloxacin Entering a Plant-Soil System[J]. Environmental Pollution, 2016, 212: 440-448. doi: 10.1016/j.envpol.2016.02.043
|
马驿, 陈杖榴, 曾振灵. 恩诺沙星对土壤微生物群落功能多样性的影响[J]. 生态学报, 2007, 27(8): 3400-3406. doi: 10.3321/j.issn:1000-0933.2007.08.037
|
DENG Y, DEBOGNIES A, ZHANG Q, et al. Effects ofOfloxacin on the Structure and Function of Freshwater Microbial Communities[J]. Aquatic Toxicology, 2022, 244: 106084. doi: 10.1016/j.aquatox.2022.106084
|
QIU L L, DANIELL T J, BANWART S A, et al. Insights into the Mechanism of the Interference of Sulfadiazine on Soil Microbial Community and Function[J]. Journal of Hazardous Materials, 2021, 419: 126388. doi: 10.1016/j.jhazmat.2021.126388
|
LIU W, PAN N, CHEN W, et al. Effect ofVeterinary Oxytetracycline on Functional Diversity of Soil Microbial Community[J]. Plant, Soil and Environment, 2012, 58(7): 295-301. doi: 10.17221/430/2011-PSE
|
BI Q F, LI K J, ZHENG B X, et al. Partial Replacement of Inorganic Phosphorus (P) by Organic Manure Reshapes Phosphate Mobilizing Bacterial Community and Promotes P Bioavailability in a Paddy Soil[J]. Science of The Total Environment, 2020, 703: 134977. doi: 10.1016/j.scitotenv.2019.134977
|
ZHU X Y, ZHAO X R, LIN Q M, et al. Distribution Characteristics of phoD-Harbouring Bacterial Community Structure and Its Roles in Phosphorus Transformation in Steppe Soils in Northern China[J]. Journal of Soil Science and Plant Nutrition, 2021, 21(2): 1531-1541. doi: 10.1007/s42729-021-00459-3
|
TOYAMA H, NISHIBAYASHI E, SAEKI M, et al. FactorsRequired for the Catalytic Reaction of PqqC/D which Produces Pyrroloquinoline Quinone[J]. Biochemical and Biophysical Research Communications, 2007, 354(1): 290-295. doi: 10.1016/j.bbrc.2007.01.001
|
HU W, ZHANG Y P, RONG X M, et al. Coupling Amendment of Biochar and Organic Fertilizers Increases Maize Yield and Phosphorus Uptake by Regulating Soil Phosphatase Activity and Phosphorus-Acquiring Microbiota[J]. Agriculture, Ecosystems & Environment, 2023, 355: 108582.
|
LIU B, XIA H, JIANG C C, et al. 14 Year Applications of Chemical Fertilizers and Crop Straw Effects on Soil Labile Organic Carbon Fractions, Enzyme Activities and Microbial Community in Rice-Wheat Rotation of Middle China[J]. Science of The Total Environment, 2022, 841: 156608. doi: 10.1016/j.scitotenv.2022.156608
|
HAN J Q, DONG Y Y, ZHANG M. Chemical Fertilizer Reduction with Organic Fertilizer Effectively Improve Soil Fertility and Microbial Community from Newly Cultivated Land in the Loess Plateau of China[J]. Applied Soil Ecology, 2021, 165: 103966. doi: 10.1016/j.apsoil.2021.103966
|
马群, 刘铭, 周玉玲, 等. 生物炭与有机无机肥配施对土壤质量的影响[J]. 西南大学学报(自然科学版), 2024, 46(7): 115-126. doi: 10.13718/j.cnki.xdzk.2024.07.012
|
李鸿, 史东梅, 盘礼东. 生物炭与化肥配施对紫色土坡耕地侵蚀性耕层土壤水分及入渗特性的影响[J]. 西南大学学报(自然科学版), 2024, 46(4): 121-132. doi: 10.13718/j.cnki.xdzk.2024.04.012
|
IRIE M, UKITA T. A Modification of the Assay Methods Fornon-Specific Phosphomono- and Diesterases, Using p-Nitrophenyl Phosphate Derivatives as Substrates[J]. Journal of Biochemistry, 1965, 57: 142-146. doi: 10.1093/oxfordjournals.jbchem.a128069
|
DELUCA T H, GLANVILLE H C, HARRIS M, et al. ANovel Biologically-Based Approach to Evaluating Soil Phosphorus Availability Across Complex Landscapes[J]. Soil Biology and Biochemistry, 2015, 88: 110-119. doi: 10.1016/j.soilbio.2015.05.016
|
ZHANG M, ZHANG R X, SONG R Q, et al. Soil PQQC-Harboring Bacterial Community Response to Increasing Aridity in Semi-Arid Grassland Ecosystems: Diversity, Co-Occurrence Network, and Assembly Process[J]. Frontiers in Microbiology, 2022, 13: 1019023. doi: 10.3389/fmicb.2022.1019023
|
HERREN C M, MCMAHON K D. Cohesion: A Method for Quantifying the Connectivity of Microbial Communities[J]. The ISME Journal, 2017, 11(11): 2426-2438. doi: 10.1038/ismej.2017.91
|
MUHAMMAD J, KHAN S, SU J Q, et al. Antibiotics in Poultry Manure and Their Associated Health Issues: A Systematic Review[J]. Journal of Soils and Sediments, 2020, 20(1): 486-497. doi: 10.1007/s11368-019-02360-0
|
CUI H, OU Y, WANG L X, et al. Tetracycline Hydrochloride-Stressed Changes in Phosphorus Fractions During Swine Manure Composting: Emphasize on Phosphorus Functional Genes[J]. Process Safety and Environmental Protection, 2022, 168: 336-343. doi: 10.1016/j.psep.2022.10.006
|
YIN Y, LIANG C H. Transformation of Phosphorus Fractions in Paddy Soil Amended with Pig Manure[J]. Journal of Soil Science and Plant Nutrition, 2013, 13: 1-15.
|
SANTÁS-MIGUEL V, DÍAZ-RAVIÑA M, MARTÍN A, et al. Soil Enzymatic Activities and Microbial Community Structure in Soils Polluted with Tetracycline Antibiotics[J]. Agronomy, 2021, 11(5): 906-1001. doi: 10.3390/agronomy11050906
|
TELESINSKI A, PLATKOWSKI M, CYBULSKA K, et al. Response of Soil Enzymes to Two Antibiotics: Polymyxin B and Penicillin G[J]. Fresenius Environmental Bulletin, 2018, 27: 3837-3845.
|
HOU J, PAN B, NIU X K, et al. Sulfamethoxazole Sorption by Sediment Fractions in Comparison to Pyrene and Bisphenol A[J]. Environmental Pollution, 2010, 158(9): 2826-2832. doi: 10.1016/j.envpol.2010.06.023
|
蔡观, 胡亚军, 王婷婷, 等. 基于生物有效性的农田土壤磷素组分特征及其影响因素分析[J]. 环境科学, 2017, 38(4): 1606-1612.
|
WANG L, WANG J, YUAN J, et al. Long-Term Organic Fertilization Strengthens the Soil Phosphorus Cycle and Phosphorus Availability by Regulating thePQQC- and PhoD-Harboring Bacterial Communities[J]. Microbial Ecology, 2023, 86(4): 2716-2732. doi: 10.1007/s00248-023-02279-7
|
LI X H, LU S Y, LIU S D, et al. Shifts of Bacterial Community and Molecular Ecological Network at the Presence of Fluoroquinolones in a Constructed Wetland System[J]. Science of The Total Environment, 2020, 708: 135156. doi: 10.1016/j.scitotenv.2019.135156
|
KERGOAT L, BESSE-HOGGAN P, LEREMBOURE M, et al. Environmental Concentrations of Sulfonamides Can Alter Bacterial Structure and Induce Diatom Deformities in Freshwater Biofilm Communities[J]. Frontiers in Microbiology, 2021, 12: 643719. doi: 10.3389/fmicb.2021.643719
|
WEI X M, HU Y J, CAI G, et al. Organic Phosphorus Availability Shapes the Diversity of PhoD-Harboring Bacteria in Agricultural Soil[J]. Soil Biology and Biochemistry, 2021, 161: 108364. doi: 10.1016/j.soilbio.2021.108364
|
DENG P Y, ZHOU Y C, CHEN W S, et al. Microbial Mechanisms for Improved Soil Phosphorus Mobilization in Monoculture Conifer Plantations by Mixing with Broadleaved Trees[J]. Journal of Environmental Management, 2024, 359: 120955. doi: 10.1016/j.jenvman.2024.120955
|
ZHANG Z K, HAN T, HE H H. Plant Growth and Phosphorus Uptake of Wheat in Response to Oxytetracycline[J]. Journal of Soil Science and Plant Nutrition, 2023, 23(2): 2162-2173. doi: 10.1007/s42729-023-01170-1
|
张银杰, 苗玉红, 盛开, 等. 配施有机肥调控农田土壤磷素有效性研究进展[J]. 河南农业大学学报, 2025, 59(2): 189-198.
|
袁征, 郑志杰, 覃卫林, 等. 农田微塑料污染现状及对土壤生态系统的危害[J]. 云南农业大学学报(自然科学), 2024, 39(2): 176-184.
|
RIAZ L, MAHMOOD T, COYNE M S, et al. Physiological and Antioxidant Response of Wheat (Triticum Aestivum) Seedlings to Fluoroquinolone Antibiotics[J]. Chemosphere, 2017, 177: 250-257. doi: 10.1016/j.chemosphere.2017.03.033
|
TIMMERER U, LEHMANN L, SCHNUG E, et al. Toxic Effects of Single Antibiotics and Antibiotics in Combination on Germination and Growth of Sinapis alba L. [J]. Plants, 2020, 9(1): 107-119. doi: 10.3390/plants9010107
|