PÖRTNER H O, FARRELL A P. Physiology and Climate Change [J]. Science, 2008, 322(5902): 690-692. doi: 10.1126/science.1163156
FICETOLA G F, MAIORANO L. Contrasting Effects of Temperature and Precipitation Change on Amphibian Phenology, Abundance and Performance [J]. Oecologia, 2016, 181(3): 683-693. doi: 10.1007/s00442-016-3610-9
CAREY C, ALEXANDER M A. Climate Change and Amphibian Declines: Is there a Link? [J]. Diversity and Distributions, 2003, 9(2): 111-121. doi: 10.1046/j.1472-4642.2003.00011.x
ANGILLETTA M J, NIEWIAROWSKI P H, NAVAS C A. The Evolution of Thermal Physiology in Ectotherms [J]. Journal of Thermal Biology, 2002, 27(4): 249-268. doi: 10.1016/S0306-4565(01)00094-8
LUTTERSCHMIDT W I, HUTCHISON V H. The Critical Thermal Maximum: History and Critique [J]. Canadian Journal of Zoology, 1997, 75(10): 1561-1574. doi: 10.1139/z97-783
SHERMAN E, LEVITIS D. Heat Hardening as a Function of Developmental Stage in Larval and Juvenile Bufo Americanus and Xenopus Laevis [J]. Journal of Thermal Biology, 2003, 28(5): 373-380. doi: 10.1016/S0306-4565(03)00014-7
WU M X, HU L J, DANG W, et al. Effect of Thermal Acclimation on Thermal Preference, Resistance and Locomotor Performance of Hatchling Soft-Shelled Turtle [J]. Current Zoology, 2013, 59(6): 718-724. doi: 10.1093/czoolo/59.6.718
施林强, 赵丽华, 马小浩, 等. 泽陆蛙和饰纹姬蛙蝌蚪不同热驯化下选择体温和热耐受性[J]. 生态学报, 2012, 32(2): 465-471.
王立志, 李晓晨. 恒温驯化对中国林蛙热耐受性的影响[J]. 水生生物学报, 2007, 31(5): 748-750. doi: 10.3321/j.issn:1000-3207.2007.05.023
LOUDON A H, WOODHAMS D C, PARFREY L W, et al. Microbial Community Dynamics and Effect of Environmental Microbial Reservoirs on Red-Backed Salamanders (Plethodon Cinereus) [J]. The ISME Journal, 2014, 8(4): 830-840. doi: 10.1038/ismej.2013.200
WANG Z, LU H L, MA L, et al. Differences in Thermal Preference and Tolerance among Three Phrynocephalus Lizards (Agamidae) with Different Body Sizes and Habitat Use [J]. Asian Herpetological Research, 2013, 4(3): 214-220.
HUANG S P, HSU Y, TU M C. Thermal Tolerance and Altitudinal Distribution of Two Sphenomorphus Lizards in Taiwan [J]. Journal of Thermal Biology, 2006, 31(5): 378-385. doi: 10.1016/j.jtherbio.2005.11.032
YANG J, SUN Y Y, AN H, et al. Northern Grass Lizards (Takydromus Septentrionalis) from Different Populations Do Not Differ in Thermal Preference and Thermal Tolerance when Acclimated under Identical Thermal Conditions [J]. Journal of Comparative Physiology B, Biochemical, Systemic, and Environmental Physiology, 2008, 178(3): 343-349. doi: 10.1007/s00360-007-0227-7
曾丹, 李林, 严峰, 等. 中华鳖IGF2和IGF2R基因克隆及其功能研究[J]. 南方农业学报, 2024, 55(4): 1181-1193. doi: 10.3969/j.issn.2095-1191.2024.04.026
SHERMAN E. Ontogenetic Change in Thermal Tolerance of the Toad Bufo Woodhousii Fowleri [J]. Comparative Biochemistry and Physiology Part A: Physiology, 1980, 65(2): 227-230. doi: 10.1016/0300-9629(80)90229-7
BESTION E, JACOB S, ZINGER L, et al. Climate Warming Reduces Gut Microbiota Diversity in a Vertebrate Ectotherm [J]. Nature Ecology and Evolution, 2017, 1(6): 161. doi: 10.1038/s41559-017-0161
KOHL K D, YAHN J. Effects of Environmental Temperature on the Gut Microbial Communities of Tadpoles [J]. Environmental Microbiology, 2016, 18(5): 1561-1565. doi: 10.1111/1462-2920.13255
郭新羽, 沙玉柱, 蒲小宁, 等. 环境温度对动物肠道微生物菌群影响的研究进展[J]. 畜牧兽医学报, 2022, 53(9): 2858-2866.
LEGRAND T P R A, CATALANO S R, WOS-OXLEY M L, et al. The Inner Workings of the Outer Surface: Skin and Gill Microbiota as Indicators of Changing Gut Health in Yellowtail Kingfish [J]. Frontiers in Microbiology, 2018, 8: 2664. doi: 10.3389/fmicb.2017.02664
ROTHSCHILD D, WEISSBROD O, BARKAN E, et al. Environment Dominates over Host Genetics in Shaping Human Gut Microbiota [J]. Nature, 2018, 555(7695): 210-215. doi: 10.1038/nature25973
ALBERDI A, AIZPURUA O, BOHMANN K, et al. Do Vertebrate Gut Metagenomes Confer Rapid Ecological Adaptation? [J]. Trends in Ecology and Evolution, 2016, 31(9): 689-699. doi: 10.1016/j.tree.2016.06.008
TROSVIK P, DE MUINCK E J. Ecology of Bacteria in the Human Gastrointestinal Tract-Identification of Keystone and Foundation Taxa [J]. Microbiome, 2015, 3: 44. doi: 10.1186/s40168-015-0107-4
CHEVALIER C, STOJANOVIĆ O, COLIN D J, et al. Gut Microbiota Orchestrates Energy Homeostasis during Cold [J]. Cell, 2015, 163(6): 1360-1374. doi: 10.1016/j.cell.2015.11.004
KOHL K D, CAREY H V. A Place for Host-Microbe Symbiosis in the Comparative Physiologist's Toolbox [J]. Journal of Experimental Biology, 2016, 219(22): 3496-3504. doi: 10.1242/jeb.136325
ZANEVELD J R, MCMINDS R, VEGA THURBER R. Stress and Stability: Applying the Anna Karenina Principle to Animal Microbiomes [J]. Nature Microbiology, 2017, 2: 17121. doi: 10.1038/nmicrobiol.2017.121
FONTAINE S S, NOVARRO A J, KOHL K D. Environmental Temperature Alters the Digestive Performance and Gut Microbiota of a Terrestrial Amphibian [J]. Journal of Experimental Biology, 2018, 221(20): jeb187559.
ZHU L F, ZHU W, ZHAO T, et al. Environmental Temperatures Affect the Gastrointestinal Microbes of the Chinese Giant Salamander [J]. Frontiers in Microbiology, 2021, 12: 543767. doi: 10.3389/fmicb.2021.543767
费梁, 胡淑琴, 叶昌媛, 等. 中国动物志: 两栖纲(中卷) 无尾目[M]. 北京: 科学出版社, 2009.
徐大德, 李军, 李方满. 水热环境对黑眶蟾蜍幼体存活的影响[J]. 生态科学, 2007, 26(1): 59-62.
周凡星, 童明慧, 刘娟, 等. 药用动物源蛋白质多肽化学组成和生物活性的研究进展[J]. 中国药学杂志, 2024, 59(1): 7-17.
陈沃洪, 陈伟庭, 李东风. 三种洗涤剂对黑眶蟾蜍蝌蚪生长发育的影响[J]. 环境科学与技术, 2006, 29(11): 26-28, 85, 116.
樊晓丽. 黑眶蟾蜍的热适应性: 现象与机制[D]. 南京: 南京师范大学, 2014.
王立, 徐剑. 生活污水对黑眶蟾蜍胚胎及蝌蚪发育的影响[J]. 韶关学院学报, 2012, 33(4): 50-54.
徐大德, 罗斯特, 李彩欣. 黑眶蟾蜍蝌蚪的适应性温度研究[J]. 六盘水师范学院学报, 2020, 32(6): 37-40.
KELLEY A L. The Role Thermal Physiology Plays in Species Invasion [J]. Conservation Physiology, 2014, 2(1): 45-50.
XIA J G, MA Y J, FU C, et al. Effects of Temperature Acclimation on the Critical Thermal Limits and Swimming Performance of Brachymystax Lenok Tsinlingensis: A Threatened Fish in Qinling Mountain Region of China [J]. Ecological Research, 2017, 32(1): 61-70.
TEAM R C. The R Priject for Statistical Computing [EB/OL]. (2024-06-14) [2024-09-15]. https://www.r-project.org/.
BOKULICH N A, KAEHLER B D, RIDEOUT J R, et al. Optimizing Taxonomic Classification of Marker-Gene Amplicon Sequences with QIIME 2's Q2-Feature-Classifier Plugin [J]. Microbiome, 2018, 6(1): 90.
BOLYEN E, RIDEOUT J R, DILLON M R, et al. Author Correction: Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2 [J]. Nature Biotechnology, 2019, 37(9): 1091.
WANG Q, GARRITY G M, TIEDJE J M, et al. Naive Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy [J]. Applied and Environmental Microbiology, 2007, 73(16): 5261-5267.
WU Y N, LIN L, XIAO Y C, et al. Effects of Temperature Acclimation on Body Mass and Energy Budget in the Chinese Bulbul Pycnonotus Sinensis [J]. Zoological Research, 2014, 35(1): 33-41.
ATKINSON D. Temperature and Organism Size-A Biological Law for Ectotherms? [J]. Advances in Ecological Research, 1994, 25: 1-58.
DUNLAP D G. Influence of Temperature and Duration of Acclimation, Time of Day, Sex and Body Weight on Metabolic Rates in the Hylid Frog, Acris Crepitans [J]. Comparative Biochemistry and Physiology, 1969, 31(4): 555-570.
FEDER M E, BURGGREN W W. Environmental Physiology of the Amphibians [M]. Chicago: University of Chicago Press, 1992.
LI H, WANG Z, MEI W B, et al. Temperature Acclimation Affects Thermal Preference and Tolerance in Three Eremias Lizards (Lacertidae) [J]. Current Zoology, 2009, 55(4): 258-265.
PENG J, CAO Z D, FU S J. The Effects of Constant and Diel-Fluctuating Temperature Acclimation on the Thermal Tolerance, Swimming Capacity, Specific Dynamic Action and Growth Performance of Juvenile Chinese Bream [J]. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 2014, 176: 32-40.
庞旭, 付世建, 刘小红, 等. 中华倒刺鲃能量代谢和热耐受特征的体重效应[J]. 生态学报, 2020, 40(16): 5814-5821.
余谙迪, 李玄, 肖微. 2019年6月四川攀枝花一次持续高温天气的诊断分析[J]. 高原山地气象研究, 2022, 42(S1): 88-92.
DE OLIVEIRA ANDERSON R C, BOVO R P, ANDRADE D V. Seasonal Variation in the Thermal Biology of a Terrestrial Toad, Rhinella Icterica (Bufonidae), from the Brazilian Atlantic Forest [J]. Journal of Thermal Biology, 2018, 74: 77-83.
KIR M, SUNAR M C, ALTINDAG B C. Thermal Tolerance and Preferred Temperature Range of Juvenile Meagre Acclimated to Four Temperatures [J]. Journal of Thermal Biology, 2017, 65: 125-129.
HAGGERTY J. Thermal Tolerance of the Common Coqui Frog (Eleutherodactylus coqui) in East Hawaii Along an Elevation Gradient [D]. Hawaii: University of Hawaii at Hilo, 2016.
CLAUSSEN D L. Thermal Acclimation in Ambystomatid Salamanders [J]. Comparative Biochemistry and Physiology Part A: Physiology, 1977, 58(4): 333-340.
陆洪良, 耿军, 徐卫, 等. 东方蝾螈幼体热耐受性和游泳表现的热驯化响应[J]. 生态学报, 2017, 37(5): 1603-1610.
夏继刚, 黄艳, 付世建, 等. 斑马鱼热耐受性对温度驯化的响应及其性别差异[J]. 生态学杂志, 2019, 38(8): 2477-2481.
FLOYD R B. Ontogenetic Change in the Temperature Tolerance of Larval Bufo Marinus (Anura: Bufonidae) [J]. Comparative Biochemistry and Physiology Part A: Physiology, 1983, 75(2): 267-271.
DIAZ HERRERA F, SIERRA URIBE E, FERNANDO BVCKLE RAMIREZ L, et al. Critical Thermal Maxima and Minima of Macrobrachium Rosenbergii (Decapoda: Palaemonidae) [J]. Journal of Thermal Biology, 1998, 23(6): 381-385.
KUMLU M, TVRKMEN S, KUMLU M. Thermal Tolerance of Litopenaeus Vannamei (Crustacea: Penaeidae) Acclimated to Four Temperatures [J]. Journal of Thermal Biology, 2010, 35(6): 305-308.
ATKINSON D, SIBLY R M. Why Are Organisms Usually Bigger in Colder Environments?Making Sense of a Life History Puzzle [J]. Trends in Ecology and Evolution, 1997, 12(6): 235-239.
HOPKINS W A. Amphibians as Models for Studying Environmental Change [J]. ILAR Journal, 2007, 48(3): 270-277.
任超璐. 温度对中国林蛙肠道菌群和脂质代谢以及骨骼发育的影响[D]. 西安: 陕西师范大学, 2022.
佟庆. 东北林蛙肠道菌群多样性及其影响因素研究[D]. 哈尔滨: 东北农业大学, 2019.
周爽. 温度对两种林蛙肠道菌群、免疫能力和氧化应激的影响[D]. 哈尔滨: 哈尔滨师范大学, 2023.
SILBY M W, WINSTANLEY C, GODFREY S A C, et al. Pseudomonas Genomes: Diverse and Adaptable [J]. FEMS Microbiology Reviews, 2011, 35(4): 652-680.
GOODFELLOW M, FIEDLER H P. A Guide to Successful Bioprospecting: Informed by Actinobacterial Systematics [J]. Antonie Van Leeuwenhoek, 2010, 98(2): 119-142.
THOMAS F, HEHEMANN J H, REBUFFET E, et al. Environmental and Gut Bacteroidetes: The Food Connection [J]. Frontiers in Microbiology, 2011, 2: 93.
MANN M B, PRICHULA J, DE CASTRO Í M S, et al. The Oral Bacterial Community in Melanophryniscus admirabilis (Admirable Red-Belly Toads): Implications for Conservation [J]. Microorganisms, 2021, 9(2): 220.
COENYE T, VANDAMME P. Diversity and Significance of Burkholderia Species Occupying Diverse Ecological Niches [J]. Environmental Microbiology, 2003, 5(9): 719-729.
HAO C, DE JONGE N, ZHU D, et al. Food Origin Influences Microbiota and Stable Isotope Enrichment Profiles of Cold-Adapted Collembola (Desoria Ruseki) [J]. Frontiers in Microbiology, 2022, 13: 1030429.
HUANG S W, SHENG P, ZHANG H Y. Isolation and Identification of Cellulolytic Bacteria from the Gut of Holotrichia parallela Larvae (Coleoptera: Scarabaeidae) [J]. International Journal of Molecular Sciences, 2012, 13(3): 2563-2577.
WAN B W, CHEN G L, POON E S K, et al. Environmental Factors and Host Sex Influence the Skin Microbiota Structure of Hong Kong Newt (Paramesotriton hongkongensis) in a Coldspot of Chytridiomycosis in Subtropical East Asia [J]. Integrative Zoology, 2025, 20(2): 236-255.
WOO P C, LEUNG P K, LEUNG K W, et al. Identification by 16S Ribosomal RNA Gene Sequencing of an Enterobacteriaceae Species from a Bone Marrow Transplant Recipient [J]. Molecular Pathology, 2000, 53(4): 211-215.
WALKE J B, BELDEN L K. Harnessing the Microbiome to Prevent Fungal Infections: Lessons from Amphibians [J]. PLoS Pathogens, 2016, 12(9): e1005796.
TONG Q, CUI L Y, HU Z F, et al. Environmental and Host Factors Shaping the Gut Microbiota Diversity of Brown Frog Rana Dybowskii [J]. Science of The Total Environment, 2020, 741: 140142.
KUENEMAN J G, PARFREY L W, WOODHAMS D C, et al. The Amphibian Skin-Associated Microbiome across Species, Space and Life History Stages [J]. Molecular Ecology, 2014, 23(6): 1238-1250.