ZHENG D Y, DU J T, LIU Y. Bandgap Mechanism Analysis of Elastically Restrained Periodic Cylindrical Shells with Arbitrary Periodic Thickness[J]. International Journal of Mechanical Sciences, 2023, 237: 107803.
|
ZHENG D Y, DU J T, LIU Y. Bandgap Characteristics of Cylindrical Shells with Periodic Configuration of Arbitrary Thickness Variation and Elastic Supports[J]. Journal of Vibration and Control, 2024, 9(23): 1-17. doi: 10.1177/10775463241280679
|
ZHENG D Y, DU J T, LIU Y. Vibration Characteristics Analysis of an Elastically Restrained Cylindrical Shell with Arbitrary Thickness Variation[J]. Thin-Walled Structures, 2021, 165: 107930.
|
ZHENG D Y, DU J T, LIU Y, et al. Dynamic Behavior and Power Flow Analyses of a Cylindrical Shell Structure Embedded with Acoustic Black Holes[J]. Applied Acoustics, 2023, 208: 109349.
|
MIRONOV M A. Propagation of a Flexural Wave in a Plate Whose Thickness Decreases Smoothly to Zero in a Finite Interval[J]. Soviet Physics Acoustics, 1988, 34(3): 318-319.
|
KRYLOV V V, TILMAN F J B S. Acoustic 'Black Holes' for Flexural Waves as Effective Vibration Dampers[J]. Journal of Sound and Vibration, 2004, 274(3-5): 605-619.
|
KRYLOV V V, SHUVALOV A L. Propagation of Localised Flexural Vibrations along Plate Edges Described by a Power Law[J]. Proceedings of the Institute of Acoustics, 2000, 22(2): 263-270.
|
KRYLOV V V. Conditions for Validity of the Geometrical-Acoustics Approximation in Application to Waves in an Acute-Angle Solid Wedge[J]. Soviet Physics Acoustics, 1989, 35(2): 176-180.
|
KRYLOV V V. New Type of Vibration Dampers Utilising the Effect of Acoustic 'black holes'[J]. Acta Acustica United with Acustica, 2004, 90(5): 830-837.
|
KRYLOV V V. Surface Properties of Solids and Surface Acoustic Waves: Application to Chemical Sensors and Layer Characterization[J]. Applied Physics A, 1995, 61(3): 229-236.
|
TANG L L, CHENG L, JI H L, et al. Characterization of Acoustic Black Hole Effect Using a One-Dimensional Fully-Coupled and Wavelet-Decomposed Semi-Analytical Model[J]. Journal of Sound and Vibration, 2016, 374: 172-184.
|
TANG L L, CHENG L. Enhanced Acoustic Black Hole Effect in Beams with a Modified Thickness Profile and Extended Platform[J]. Journal of Sound and Vibration, 2017, 391: 116-126.
|
HOU T B, QIN H. Continuous and Discrete Mexican Hat Wavelet Transforms on Manifolds[J]. Graphical Models, 2012, 74(4): 221-232.
|
CHENG L. Vibroacoustic Modeling of Mechanically Coupled Structures: Artificial Spring Technique Applied to Light and Heavy Mediums[J]. Shock and Vibration, 1996, 3(3): 193-200.
|
DENG J, ZHENG L, ZENG P Y, et al. Passive Constrained Viscoelastic Layers to Improve the Efficiency of Truncated Acoustic Black Holes in Beams[J]. Mechanical Systems and Signal Processing, 2019, 118: 461-476.
|
MA L, ZHANG S, CHENG L. A 2D Daubechies Wavelet Model on the Vibration of Rectangular Plates Containing Strip Indentations with a Parabolic Thickness Profile[J]. Journal of Sound and Vibration, 2018, 429: 130-146.
|
WANG Y H, DU J T, CHENG L. Power Flow and Structural Intensity Analyses of Acoustic Black Hole Beams[J]. Mechanical Systems and Signal Processing, 2019, 131: 538-553.
|
曾鹏云, 郑玲, 左益芳, 等. 基于半解析法的一维圆锥形声学黑洞梁能量聚集效应研究[J]. 噪声与振动控制, 2018, 38(S1): 210-214.
|
O'BOY D J, KRYLOV V V, KRALOVIC V. Damping of Flexural Vibrations in Rectangular Plates Using the Acoustic Black Hole Effect[J]. Journal of Sound and Vibration, 2010, 329(22): 4672-4688.
|
O'BOY D J, KRYLOV V V. Damping of Flexural Vibrations in Circular Plates with Tapered Central Holes[J]. Journal of Sound and Vibration, 2011, 330(10): 2220-2236.
|
GEORGIEV V B, CUENCA J, GAUTIER F, et al. Damping of Structural Vibrations in Beams and Elliptical Plates Using the Acoustic Black Hole Effect[J]. Journal of Sound and Vibration, 2011, 330(11): 2497-2508.
|
黄薇, 季宏丽, 裘进浩, 等. 二维声学黑洞对弯曲波的能量聚集效应[J]. 振动与冲击, 2017, 36(9): 51-57, 92.
|
ZHENG D Y. Vibration Characteristic Analysis of Thin-Walled Conical Shells with Arbitrary Thickness Variation and General Boundary Condition[J]. Thin-Walled Structures, 2025, 212: 113160.
|
张中昊, 冮春旭, 汪可欣. 应用流固耦合的灌区弧形闸门拓扑优化[J]. 东北农业大学学报, 2024, 55(8): 222-231.
|