文钦, 贾思思, 王加峰, 等. 水稻单倍体诱导基因OsMATL突变体的创制与分析[J]. 作物学报, 2021, 47(5): 816-825.
CHEN J J, MIAO Z N, KONG D Y, et al. Application of CRISPR/Cas9 Technology in Rice Germplasm Innovation and Genetic Improvement[J]. Genes, 2024, 15(11): 1492.
HU H F, ZHAO J L, THOMAS W J W, et al. The Role of Pangenomics in Orphan Crop Improvement[J]. Nature Communications, 2025, 16(1): 118.
MCGINTY E L, SMITH-KEUNE C, JERRY D R. A High Through-put Protocol for Quantifying Nucleic Acids in Individual Microcrustaceans Using New Generation RNA and DNA Specific Dyes[J]. Journal of Shellfish Research, 2008, 27(2): 449-455.
MA X L, ZHANG Q Y, ZHU Q L, et al. A Robust CRISPR/Cas9 System for Convenient, High-efficiency Multiplex Genome Editing in Monocot and Dicot Plants[J]. Molecular Plant, 2015, 8(8): 1274-1284.
温一博, 陈淑婷, 徐正进, 等. DEP1Gn1aqSW5组合应用调控水稻穗部性状[J]. 中国农业科学, 2023, 56(7): 1218-1227.
WANG S G, MA B T, GAO Q, et al. Dissecting the Genetic Basis of Heavy Panicle Hybrid Rice Uncovered Gn1a and GS3 as Key Genes[J]. Theoretical and Applied Genetics, 2018, 131(6): 1391-1403.
李兆伟, 莫祖意, 孙聪颖, 等. OsNAC2d基因编辑水稻突变体的创建及其对干旱胁迫的响应[J]. 作物学报, 2023, 49(2): 365-376.
ASHIKARI M, SAKAKIBARA H, LIN S Y, et al. Cytokinin Oxidase Regulates Rice Grain Production[J]. Science, 2005, 309(5735): 741-745.
LI M R, LI X X, ZHOU Z J, et al. Reassessment of the Four Yield-related Genes Gn1a, DEP1, GS3, and IPA1 in Rice Using a CRISPR/Cas9 System[J]. Frontiers in Plant Science, 2016(7): 377.
YEH S Y, CHEN H W, NG C Y, et al. Down-regulation of Cytokinin Oxidase 2 Expression Increases Tiller Number and Improves Rice Yield[J]. Rice, 2015, 8(1): 36.
GUO T, LU Z Q, SHAN J X, et al. ERECTA1 Acts Upstream of the OsMKKK10-OsMKK4-OsMPK6 Cascade to Control Spikelet Number by Regulating Cytokinin Metabolism in Rice[J]. The Plant Cell, 2020, 32(9): 2763-2779.
苌兴超, 黄永兰, 唐秀英, 等. Gn1a基因靶向敲除对粳稻产量构成因素的影响[J]. 江西农业大学学报, 2023, 45(1): 10-16.
HU X X, MENG X B, LIU Q, et al. Increasing the Efficiency of CRISPR-Cas9-VQR Precise Genome Editing in Rice[J]. Plant Biotechnology Journal, 2018, 16(1): 292-297.
TU B, TAO Z, WANG S G, et al. Loss of Gn1a/OsCKX2 Confers Heavy-panicle Rice with Excellent Lodging Resistance[J]. Journal of Integrative Plant Biology, 2022, 64(1): 23-38.
殷得所, 李进波, 万丙良, 等. 利用Gn1a基因进行粳稻穗粒数改良的研究[J]. 湖北农业科学, 2016, 55(21): 5455-5457, 5518.
XIE X R, MA X L, ZHU Q L, et al. CRISPR-GE: A Convenient Software Toolkit for CRISPR-based Genome Editing[J]. Molecular Plant, 2017, 10(9): 1246-1249.
刘建国, 陈冬东, 陈玉玉, 等. 水稻MKKs家族基因成员OsMKK4的不同等位基因型及自然变异对籽粒的影响[J]. 作物学报, 2025, 51 (3): 598-608.
WANG W S, MAULEON R, HU Z Q, et al. Genomic Variation in 3 010 Diverse Accessions of Asian Cultivated Rice[J]. Nature, 2018, 557(7703): 43-49.
ALEXANDROV N, TAI S S, WANG W S, et al. SNP-seek Database of SNPS Derived from 3000 Rice Genomes[J]. Nucleic Acids Research, 2015, 43: 1023-1027.
LU Z F, YU H, XIONG G S, et al. Genome-wide Binding Analysis of the Transcription Activator Ideal Plant Architecture1 Reveals a Complex Network Regulating Rice Plant Architecture[J]. The Plant Cell, 2013, 25(10): 3743-3759.
HUANG X H, YANG S H, GONG J Y, et al. Genomic Architecture of Heterosis for Yield Traits in Rice[J]. Nature, 2016, 537(7622): 629-633.
HUANG X H, KURATA N, WEI X H, et al. A Map of Rice Genome Variation Reveals the Origin of Cultivated Rice[J]. Nature, 2012, 490(7421): 497-501.
DESCALSOTA-EMPLEO G I, AMPARADO A, INABANGAN-ASILOMA. Genetic Mapping of QTL for Agronomic Traits and Grain Mineral Elements in Rice[J]. The Crop Journal, 2019, 7(4): 560-572.
ISHIMARU K, HIROTSU N, MADOKA Y, et al. Loss of Function of the IAA-Glucose Hydrolase Gene TGW6 Enhances Rice Grain Weight and Increases Yield[J]. Nature Genetics, 2013, 45(6): 707-711.
RUAN B P, SHANG L G, ZHANG B, et al. Natural Variation in the Promoter of TGW2 Determines Grain Width and Weight in Rice[J]. The New Phytologist, 2020, 227(2): 629-640.
GUO L B, YE G Y. Use of Major Quantitative Trait Loci to Improve Grain Yield of Rice[J]. Rice Science, 2014(2): 65-82.
GALUSZKA P, FREBORT I, SEBELA M, et al. Cytokinin Oxidase or Dehydrogenase? Mechanism of Cytokinin Degradation in Cereals[J]. European Journal of Biochemistry, 2001, 268(2): 450-461.
WERNER T, KÖLLMER I, BARTRINA I, et al. New Insights into the Biology of Cytokinin Degradation[J]. Plant Biology, 2006, 8(3): 371-381.
MALITO E, CODA A, BILYEU K D, et al. Structures of Michaelis and Product Complexes of Plant Cytokinin Dehydrogenase: Implications for Flavoenzyme Catalysis[J]. Journal of Molecular Biology, 2004, 341(5): 1237-1249.
何勇, 刘耀威, 熊翔, 等. 利用CRISPR/Cas9技术编辑OsOFP30基因创制水稻粒型突变体[J]. 中国水稻科学, 2024, 38(5): 507-515.
JING F, SHI S L, KANG W J, et al. The Physiological Basis of Alfalfa Plant Height Establishment[J]. Plants, 2024, 13(5): 679.
Lu B R, Cai X X, JIN X, et al. Efficient Indica and Japonica Rice Identification Based on the Indel Molecular Method: Its Implication in Rice Breeding and Evolutionary Research[J]. Prog Nat Sci, 2009, 19(10): 1241-1252.
ZHAO H, LI J C, YANG L, et al. An Inferred Functional Impact Map of Genetic Variants in Rice[J]. Molecular Plant, 2021, 14(9): 1584-1599.
ZHAO H, YAO W, OUYANG Y D, et al. Rice Var Map: A Comprehensive Database of Rice Genomic Variations[J]. Nucleic Acids Research, 2015, 43: 1018-1022.
HECHANOVA S L, BHATTARAI K, SIMON E V, et al. Development of a Genome-wide InDel Marker Set for Allele Discrimination between Rice (Oryza sativa) and the Other Seven AA-Genome Oryza Species[J]. Scientific Reports, 2021, 11(1): 8962.
MOONSAP P, LAKSANAVILAT N, SINUMPORN S, et al. Genetic Diversity of Indo-China Rice Varieties Using ISSR, SRAP and InDel Markers[J]. Journal of Genetics, 2019, 98: 80.
YONEMARU J I, CHOI S H, SAKAI H, et al. Genome-wide Indel Markers Shared by Diverse Asian Rice Cultivars Compared to Japanese Rice Cultivar 'Koshihikari'[J]. Breeding Science, 2015, 65(3): 249-256.
SANG S, SUN X, MA T, et al. Efficient Promoter Editing of the SBEIIb Gene Enables Fine-tuning of the Resistant Starch Content in Rice[J]. Int J Biol Macromol, 2025, 290: 138904.
李光正, 李岩, 李建容, 等. 利用CRISPR/Cas 9基因编辑技术提高贵州禾产量研究[J]. 种子, 2021, 40(6): 1-5, 13.