VERMA K, MODGIL M. RNA Interference (RNAi) Mediated Technique for Combating Plant Diseases: Harnessing Nanoparticles for Effective Delivery and Enhanced Efficacy[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2024, 157(3): 53. doi: 10.1007/s11240-024-02773-x
高沥文, 陈世国, 张裕, 等. 基于RNA干扰的生物农药的发展现状与展望[J]. 中国生物防治学报, 2022, 38(3): 700-715.
KOCH A, KUMAR N, WEBER L, et al. Host-Induced Gene Silencing of Cytochrome P450 Lanosterol C14α-Demethylase-Encoding Genes Confers Strong Resistance to Fusarium Species[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(48): 19324-19329.
MAO Y B, CAI W J, WANG J W, et al. Silencing a Cotton Bollworm P450 Monooxygenase Gene by Plant-Mediated RNAi Impairs Larval Tolerance of Gossypol[J]. Nature Biotechnology, 2007, 25(11): 1307-1313. doi: 10.1038/nbt1352
ZHANG H, LI H C, MIAO X X. Feasibility, Limitation and Possible Solutions of RNAi-Based Technology for Insect Pest Control[J]. Insect Science, 2013, 20(1): 15-30. doi: 10.1111/j.1744-7917.2012.01513.x
关梅, 晁子健, 闫硕, 等. RNA农药的研究现状和发展前景[J]. 现代农药, 2023, 22 (2): 11-18.
FIRE A, XU S, MONTGOMERY M K, et al. Potent and Specific Genetic Interference by Double-Stranded RNA in Caenorhabditis elegans[J]. Nature, 1998, 391(6669): 806-811. doi: 10.1038/35888
GELEY S, MÜLLER C. RNAi: Ancient Mechanism with a Promising Future[J]. Experimental Gerontology, 2004, 39(7): 985-998. doi: 10.1016/j.exger.2004.03.040
HABIG J W, ARUSCAVAGE P J, BASS B L. In C. Elegans, High Levels of dsRNA Allow RNAi in the Absence of RDE-4[J]. PLoS One, 2008, 3(12): e4052. doi: 10.1371/journal.pone.0004052
NOWARA D, GAY A, LACOMME C, et al. HIGS: Host-Induced Gene Silencing in the Obligate Biotrophic Fungal Pathogen Blumeria graminis[J]. The Plant Cell, 2010, 22(9): 3130-3141. doi: 10.1105/tpc.110.077040
ZHANG T, JIN Y, ZHAO J H, et al. Host-Induced Gene Silencing of the Target Gene in Fungal Cells Confers Effective Resistance to the Cotton Wilt Disease Pathogen Verticillium dahliae[J]. Molecular Plant, 2016, 9(6): 939-942. doi: 10.1016/j.molp.2016.02.008
WANG M, JIN H L. Spray-Induced Gene Silencing: A Powerful Innovative Strategy for Crop Protection[J]. Trends in Microbiology, 2017, 25(1): 4-6. doi: 10.1016/j.tim.2016.11.011
KOCH A, BIEDENKOPF D, FURCH A, et al. An RNAi-Based Control of Fusarium graminearum Infections through Spraying of Long dsRNAs Involves a Plant Passage and Is Controlled by the Fungal Silencing Machinery[J]. PLoS Pathogens, 2016, 12(10): e1005901. doi: 10.1371/journal.ppat.1005901
GU K X, SONG X S, XIAO X M, et al. A β2 -Tubulin dsRNA Derived from Fusarium asiaticum Confers Plant Resistance to Multiple Phytopathogens and Reduces Fungicide Resistance[J]. Pesticide Biochemistry and Physiology, 2019, 153: 36-46. doi: 10.1016/j.pestbp.2018.10.005
OUYANG S Q, JI H M, FENG T, et al. Artificial Trans-Kingdom RNAi of FolRDR1 Is a Potential Strategy to Control Tomato Wilt Disease[J]. PLoS Pathogens, 2023, 19(6): e1011463. doi: 10.1371/journal.ppat.1011463
WERNER B T, GAFFAR F Y, SCHUEMANN J, et al. RNA-Spray-Mediated Silencing of Fusarium graminearum AGO and DCL Genes Improve Barley Disease Resistance[J]. Frontiers in Plant Science, 2020, 11: 476. doi: 10.3389/fpls.2020.00476
WANG M, WEIBERG A, LIN F M, et al. Bidirectional Cross-Kingdom RNAi and Fungal Uptake of External RNAs Confer Plant Protection[J]. Nature Plants, 2016, 2: 16151. doi: 10.1038/nplants.2016.151
SARKAR A, ROY-BARMAN S. Spray-Induced Silencing of Pathogenicity Gene MoDES1 via Exogenous Double-Stranded RNA Can Confer Partial Resistance Against Fungal Blast in Rice[J]. Frontiers in Plant Science, 2021, 12: 733129. doi: 10.3389/fpls.2021.733129
HU D F, CHEN Z Y, ZHANG C Q, et al. Reduction of Phakopsora pachyrhizi Infection on Soybean through Host- and Spray-Induced Gene Silencing[J]. Molecular Plant Pathology, 2020, 21(6): 794-807. doi: 10.1111/mpp.12931
OUYANG H, SUN G, LI K, et al. Profiling of Phakopsora pachyrhizi Transcriptome Revealed Co-Expressed Virulence Effectors as Prospective RNA Interference Targets for Soybean Rust Management[J]. Journal of Integrative Plant Biology, 2024, 66(11): 2543-2560. doi: 10.1111/jipb.13772
DEGNAN R M, SHUEY L S, RADFORD-SMITH J, et al. Double-Stranded RNA Prevents and Cures Infection by Rust Fungi[J]. Communications Biology, 2023, 6(1): 1234. doi: 10.1038/s42003-023-05618-z
ZHAO M, WANG C, WAN J, et al. Functional Validation of Pathogenicity Genes in Rice Sheath Blight Pathogen Rhizoctonia solani by a Novel Host-Induced Gene Silencing System[J]. Molecular Plant Pathology, 2021, 22(12): 1587-1598. doi: 10.1111/mpp.13130
WANG Y, GUO Y, GUO S P, et al. RNA Interference-Based Exogenous Double-Stranded RNAs Confer Resistance to Rhizoctonia solani AG-3 on Nicotiana tabacum[J]. Pest Management Science, 2024, 80(4): 2170-2178. doi: 10.1002/ps.7962
MCLOUGHLIN A G, WYTINCK N, WALKER P L, et al. Identification and Application of Exogenous dsRNA Confers Plant Protection Against Sclerotinia sclerotiorum and Botrytis cinerea[J]. Scientific Reports, 2018, 8(1): 7320. doi: 10.1038/s41598-018-25434-4
QIAO L L, LAN C, CAPRIOTTI L, et al. Spray-Induced Gene Silencing for Disease Control Is Dependent on the Efficiency of Pathogen RNA Uptake[J]. Plant Biotechnology Journal, 2021, 19(9): 1756-1768. doi: 10.1111/pbi.13589
BHAGTA S, BHARDWAJ V, KANT A. Exogenous dsRNA Trigger RNAi in Venturia Inaequalis Resulting in down Regulation of Target Genes and Growth Reduction[J]. Molecular Biology Reports, 2023, 50(10): 8421-8429. doi: 10.1007/s11033-023-08736-3
WANG Y X, LI M S, YING J H, et al. High-Efficiency Green Management of Potato Late Blight by a Self-Assembled Multicomponent Nano-Bioprotectant[J]. Nature Communications, 2023, 14(1): 5622. doi: 10.1038/s41467-023-41447-8
SHARMA S, BAIRWA A, TOMAR M, et al. Spraying of dsRNA Molecules Derived from Phytophthora infestans, along with Nanoclay Carriers as a Proof of Concept for Developing Novel Protection Strategy for Potato Late Blight[J]. Pest Management Science, 2022, 78(7): 3183-3192. doi: 10.1002/ps.6949
WANG Z W, LI Y, ZHANG B R, et al. Functionalized Carbon Dot-Delivered RNA Nano Fungicides as Superior Tools to Control Phytophthora Pathogens through Plant RdRP1 Mediated Spray-Induced Gene Silencing[J]. Advanced Functional Materials, 2023, 33(22): 2213143. doi: 10.1002/adfm.202213143
TENLLADO F, MARTÍNEZ-GARCÍA B, VARGAS M, et al. Crude Extracts of Bacterially Expressed dsRNA Can Be Used to Protect Plants Against Virus Infections[J]. BMC Biotechnology, 2003, 3: 3. doi: 10.1186/1472-6750-3-3
WORRALL E A, BRAVO-CAZAR A, NILON A T, et al. Exogenous Application of RNAi-Inducing Double-Stranded RNA Inhibits Aphid-Mediated Transmission of a Plant Virus[J]. Frontiers in Plant Science, 2019, 10: 265. doi: 10.3389/fpls.2019.00265
XU X, YU T T, ZHANG D S, et al. Evaluation of the Anti-Viral Efficacy of Three Different dsRNA Nanoparticles Against Potato Virus Y Using Various Delivery Methods[J]. Ecotoxicology and Environmental Safety, 2023, 255: 114775. doi: 10.1016/j.ecoenv.2023.114775
XU X, JIAO Y B, SHEN L L et al. Nanoparticle-dsRNA Treatment of Pollen and Root Systems of Diseased Plants Effectively Reduces the Rate of Tobacco Mosaic Virus in Contemporary Seeds[J]. ACS Applied Materials And Interfaces, 2023, 15(24): 29052-29063. doi: 10.1021/acsami.3c02798
徐翔, 解屹, 宋丽云, 等. 高效靶向降解烟草花叶病毒核酸的dsRNA筛选与大量制备[J]. 中国农业科学, 2021, 54(6): 1143-1153.
郭玉婷, 葛广路. 纳米材料的欧盟定义及安全性评估[J]. 中国个体防护装备, 2012(2): 41-45.
GRILLO R, ROSA A H, FRACETO L F. Poly (ε-Caprolactone) Nanocapsules Carrying the Herbicide Atrazine: Effect of Chitosan-Coating Agent on Physico-Chemical Stability and Herbicide Release Profile[J]. International Journal of Environmental Science and Technology, 2014, 11(6): 1691-1700. doi: 10.1007/s13762-013-0358-1
YE Z, GUO J Q, WU D W, et al. Photo-Responsive Shell Cross-Linked Micelles Based on Carboxymethyl Chitosan and Their Application in Controlled Release of Pesticide[J]. Carbohydrate Polymers, 2015, 132: 520-528. doi: 10.1016/j.carbpol.2015.06.077
KAZIEM A E, YANG L P, LIN Y G, et al. Pest Invasion-Responsive Hollow Mesoporous Silica-Linked Carboxymethyl Starch Nanoparticles for Smart Abamectin Delivery[J]. ACS Applied Nano Materials, 2022, 5(3): 3458-3469. doi: 10.1021/acsanm.1c04086
YU M L, SUN C J, XUE Y M, et al. Tannic Acid-Based Nanopesticides Coating with Highly Improved Foliage Adhesion to Enhance Foliar Retention[J]. RSC Advances, 2019, 9(46): 27096-27104. doi: 10.1039/C9RA05843E
LIANG W L, CHENG J L, ZHANG J D, et al. PH-Responsive On-Demand Alkaloids Release from Core-Shell ZnO@ZIF-8 Nanosphere for Synergistic Control of Bacterial Wilt Disease[J]. ACS Nano, 2022, 16(2): 2762-2773. doi: 10.1021/acsnano.1c09724
MONTASER A S, ABDELHAMEED R M, SHAHEEN T I. Formulating of the Sustained Release of Tebuconazole Pesticide Using Chitosan Aerogel Reinforced NFC/CaCO3 Nanocomposite[J]. International Journal of Biological Macromolecules, 2024, 256: 128419. doi: 10.1016/j.ijbiomac.2023.128419
闫硕, 蒋沁宏, 沈杰. 纳米农药及载体材料的增效机理研究现状[J]. 植物保护学报, 2022, 49(1): 366-373.
MITTER N, WORRALL E A, ROBINSON K E, et al. Clay Nanosheets for Topical Delivery of RNAi for Sustained Protection Against Plant Viruses[J]. Nature Plants, 2017, 3: 16207. doi: 10.1038/nplants.2016.207
HAO K Q, GAO X R, YANG M R, et al. A Nanomaterial for the Delivery of dsRNA as a Strategy to Alleviate Viral Infections in Maize[J]. Chemical Engineering Journal, 2024, 488: 150923. doi: 10.1016/j.cej.2024.150923
WANG Y M, YAN Q, LAN C, et al. Nanoparticle Carriers Enhance RNA Stability and Uptake Efficiency and Prolong the Protection Against Rhizoctonia solani[J]. Phytopathology Research, 2023, 5(1): 2. doi: 10.1186/s42483-023-00157-1
QIAO L L, NIÑO-SÁNCHEZ J, HAMBY R, et al. Artificial Nanovesicles for dsRNA Delivery in Spray Induced Gene Silencing for Crop Protection[J]. Plant Biotechnology Journal, 2023, 21(4): 854-865. doi: 10.1111/pbi.14001
KWAK S Y, LEW T T S, SWEENEY C J, et al. Chloroplast-Selective Gene Delivery and Expression in Planta Using Chitosan-Complexed Single-Walled Carbon Nanotube Carriers[J]. Nature Nanotechnology, 2019, 14(5): 447-455. doi: 10.1038/s41565-019-0375-4
ZHANG Z, LUO H Y, ZHANG X Y, et al. Extracellular Vesicles Mimetic Design of Membrane Chimeric Nanovesicles for dsRNA Delivery in Spray-Induced Gene Silencing for Crop Protection[J]. ACS Nano, 2024, 18(47): 32468-32480. doi: 10.1021/acsnano.4c06282
RANK A P, KOCH A. Lab-to-Field Transition of RNA Spray Applications-How Far Are We?[J]. Frontiers in Plant Science, 2021, 12: 755203. doi: 10.3389/fpls.2021.755203
DING C Y, JIAO Y B, LI Y, et al. A Novel PH-Responsive Multi-Component Nanodelivery System with siRNA for Plant Disease Management[J]. Chemical Engineering Journal, 2024, 497: 155001. doi: 10.1016/j.cej.2024.155001
SCHWARTZ S H, HENDRIX B, HOFFER P, et al. Carbon Dots for Efficient Small Interfering RNA Delivery and Gene Silencing in Plants[J]. Plant Physiol, 2020, 184(2): 647-657. doi: 10.1104/pp.20.00733
MOLNAR A, MELNYK C W, BASSETT A, et al. Small Silencing RNAs in Plants Are Mobile and Direct Epigenetic Modification in Recipient Cells[J]. Science, 2010, 328(5980): 872-875. doi: 10.1126/science.1187959
CAI Q, QIAO L L, WANG M, et al. Plants Send Small RNAs in Extracellular Vesicles to Fungal Pathogen to Silence Virulence Genes[J]. Science, 2018, 360(6393): 1126-1129. doi: 10.1126/science.aar4142
YU C, LI J Q, ZHANG Z Y, et al. Metal-Organic Framework-Based Insecticide and dsRNA Codelivery System for Insecticide Resistance Management[J]. ACS Applied Materials and Interfaces, 2023, 15(41): 48495-48505. doi: 10.1021/acsami.3c09074
YIN J, ZHAO J, WANG Z, et al. Preparation of Multifunctional Nano-Protectants for High-Efficiency Green Control of Anthracnose[J]. Advanced Science, 2024, 11(48): e2410585. doi: 10.1002/advs.202410585
MA Z Z, ZHOU H, WEI Y L, et al. A Novel Plasmid-Escherichia Coli System Produces Large Batch dsRNAs for Insect Gene Silencing[J]. Pest Management Science, 2020, 76(7): 2505-2512. doi: 10.1002/ps.5792
GUAN R B CHU D D, HAN X Y, et al. Advances in the Development of Microbial Double-Stranded RNA Production Systems for Application of RNA Interference in Agricultural Pest Control[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 753790. doi: 10.3389/fbioe.2021.753790