GHOSH P, ROYCHOUDHURY A. Molecular Basis of Salicylic Acid-Phytohormone Crosstalk in Regulating Stress Tolerance in Plants[J]. Brazilian Journal of Botany, 2024, 47(3): 735-750. doi: 10.1007/s40415-024-00983-3
|
MARQUES J P R, HOY J W, APPEZZATO-DA-GLÓRIA B, et al. Sugarcane Cell Wall-Associated Defense Responses to Infection by Sporisorium scitamineum[J]. Frontiers in Plant Science, 2018(9): 698.
|
DE CONINCK B, TIMMERMANS P, VOS C, et al. What Lies Beneath: Belowground Defense Strategies in Plants[J]. Trends in Plant Science, 2015, 20(2): 91-101. doi: 10.1016/j.tplants.2014.09.007
|
HENNIG L. Plant Gene Regulation in Response to Abiotic Stress[J]. Biochimica et Biophysica Acta, 2012, 1819(2): 85. doi: 10.1016/j.bbagrm.2012.01.005
|
FRAIRE-VELAZQUEZ S, EMMANUEL V. Abiotic Stress in Plants and Metabolic Responses[M]//Abiotic Stress-Plant Responses and Applications in Agriculture. InTech, 2013.
|
PANDEY P, RAMEGOWDA V, SENTHIL-KUMAR M. Shared and Unique Responses of Plants to Multiple Individual Stresses and Stress Combinations: Physiological and Molecular Mechanisms[J]. Frontiers in Plant Science, 2015(6): 723.
|
QU A L, DING Y F, JIANG Q, et al. Molecular Mechanisms of the Plant Heat Stress Response[J]. Biochemical and Biophysical Research Communications, 2013, 432(2): 203-207. doi: 10.1016/j.bbrc.2013.01.104
|
李昕洋. 瘤黑粉菌侵染对玉米苗期叶片组织细胞及光合特性的影响[D]. 沈阳: 沈阳农业大学, 2022.
|
ZHANG B J, LIU X, SUN Y R, et al. Sclerospora graminicola Suppresses Plant Defense Responses by Disrupting Chlorophyll Biosynthesis and Photosynthesis in Foxtail Millet[J]. Frontiers in Plant Science, 2022(13): 928040.
|
GHOSE L, NEELA F A, CHAKRAVORT T C, et al. Incidence of Leaf Blight Disease of Mulberry Plant and Assessment of Changes in Amino Acids and Photosynthetic Pigments of Infected Leaf[J]. Plant Pathology Journal, 2010, 9(3): 140-143. doi: 10.3923/ppj.2010.140.143
|
KUŹNIAK E, KOPCZEWSKI T. The Chloroplast Reactive Oxygen Species-Redox System in Plant Immunity and Disease[J]. Frontiers in Plant Science, 2020(11): 572686.
|
YANG H, LUO P G. Changes in Photosynthesis could Provide Important Insight into the Interaction between Wheat and Fungal Pathogens[J]. International Journal of Molecular Sciences, 2021, 22(16): 8865. doi: 10.3390/ijms22168865
|
GAGO J, DALOSO D M, CARRIQUÍ M, et al. Mesophyll Conductance: The Leaf Corridors for Photosynthesis[J]. Biochemical Society Transactions, 2020, 48(2): 429-439. doi: 10.1042/BST20190312
|
DE SOUZA MARQUES M M, VITORINO L C, ROSA M, et al. Leaf Physiology and Histopathology of the Interaction between the Opportunistic Phytopathogen Fusarium Equiseti and Gossypium Hirsutum Plants[J]. European Journal of Plant Pathology, 2024, 168(2): 329-349. doi: 10.1007/s10658-023-02759-z
|
QIU B L, CHEN H J, ZHENG L L, et al. An MYB Transcription Factor Modulates Panax notoginseng Resistance Against the Root Rot Pathogen Fusarium solani by Regulating the Jasmonate Acid Signaling Pathway and Photosynthesis[J]. Phytopathology, 2022, 112(6): 1323-1334. doi: 10.1094/PHYTO-07-21-0283-R
|
王继伟, 李怀方, 严衍录, 等. TMV侵染后烟叶叶绿体的荧光光谱与生理学特性[J]. 植物保护学报, 1995, 22(4): 315-318.
|
谢奎忠, 邱慧珍, 岳云, 等. 尖孢镰刀菌侵染对马铃薯光合效率和叶绿素荧光参数影响[J]. 植物保护学报, 2022, 49(3): 927-937.
|
张兆辉, 卢盼玲, 陈春宏, 等. 西葫芦抗白粉病的生理生化机制[J]. 分子植物育种, 2021, 19(9): 3074-3080.
|
叶佳净, 赵锦鹏, 卞世杰, 等. 白粉病菌对结果期南瓜叶片光合特性和叶绿体超微结构的影响[J]. 河南农业科学, 2022, 51(8): 92-98.
|
GUILENGUE N, DO CÉU SILVA M, TALHINHAS P, et al. Subcuticular-Intracellular Hemibiotrophy of Colletotrichum Lupini in Lupinus Mutabilis[J]. Plants, 2022, 11(22): 3028. doi: 10.3390/plants11223028
|
ZHANG B J, LIU X, SUN Y R, et al. Sclerospora graminicola Suppresses Plant Defense Responses by Disrupting Chlorophyll Biosynthesis and Photosynthesis in Foxtail Millet[J]. Frontiers in Plant Science, 2022(13): 928040.
|
杨金花, 徐叶挺, 张校立. 梨火疫病研究进展[J]. 分子植物育种, 2022, 20(3): 1003-1013.
|
ZARZYNŃSKA-NOWAK A, JE Z · EWSKA M, HASIÓW-JAROSZEWSKA B, et al. A Comparison of Ultrastructural Changes of Barley Cells Infected with Mild and Aggressive Isolates of Barley Stripe Mosaic Virus[J]. Journal of Plant Diseases and Protection, 2015, 122(4): 153-160. doi: 10.1007/BF03356545
|
孟秀利, 林兆威, 杨德洁, 等. 槟榔黄化病植株组织结构观察及生理指标分析[J]. 分子植物育种, 2023, 21(7): 2350-2355.
|
王莹, 秦阳阳, 曾婷, 等. 柑橘黄脉病毒侵染对柠檬光合特性和叶绿体超微结构的影响[J]. 园艺学报, 2022, 49(4): 861-867.
|
胡运高, 杨国涛, 唐力琼, 等. 稻瘟病菌粗毒素对水稻光系统Ⅱ(PSⅡ)的影响[J]. 西北农林科技大学学报(自然科学版), 2014, 42(8): 45-50, 61.
|
周娜娜, 冯素萍, 高新生, 等. 植物光合作用的光抑制研究进展[J]. 中国农学通报, 2019, 35(15): 116-123. doi: 10.11924/j.issn.1000-6850.casb18020086
|
WANG M, SUN Y M, SUN G M, et al. Water Balance Altered in Cucumber Plants Infected with Fusarium Oxysporum f. sp. Cucumerinum[J]. Scientific Reports, 2015(5): 7722.
|
LAWSON T, VIALET-CHABRAND S. Speedy Stomata, Photosynthesis and Plant Water Use Efficiency[J]. New Phytologist, 2019, 221(1): 93-98. doi: 10.1111/nph.15330
|
HORST R J, ENGELSDORF T, SONNEWALD U, et al. Infection of Maize Leaves with Ustilago Maydis Prevents Establishment of C4 Photosynthesis[J]. Journal of Plant Physiology, 2008, 165(1): 19-28. doi: 10.1016/j.jplph.2007.05.008
|
KOPCZEWSKI T, KU Z ' NIAK E, CIERESZKO I, et al. Alterations in Primary Carbon Metabolism in Cucumber Infected with Pseudomonas syringae pv lachrymans: Local and Systemic Responses[J]. International Journal of Molecular Sciences, 2022, 23(20): 12418. doi: 10.3390/ijms232012418
|
LIU Y, BUCHENAUER H. Effect of Infections with Barley Yellow Dwarf Virus and Fusarium spp. on Assimilation of 14CO2 by Flag Leaves and Translocation of Photosynthates in Wheat[J]. Journal of Plant Diseases and Protection, 2005, 112(6): 529-543. doi: 10.1007/BF03356150
|
KANWAR P, JHA G. Alterations in Plant Sugar Metabolism: Signatory of Pathogen Attack[J]. Planta, 2019, 249(2): 305-318. doi: 10.1007/s00425-018-3018-3
|
MELOTTO M, ZHANG L, OBLESSUC P R, et al. Stomatal Defense a Decade Later[J]. Plant Physiology, 2017, 174(2): 561-571. doi: 10.1104/pp.16.01853
|
MELOTTO M, UNDERWOOD W, KOCZAN J, et al. Plant Stomata Function in Innate Immunity Against Bacterial Invasion[J]. Cell, 2006, 126(5): 969-980. doi: 10.1016/j.cell.2006.06.054
|
WANG L J, GAO X, JIA G X. Stomata and ROS Changes during Botrytis Elliptica Infection in Diploid and Tetraploid Lilium Rosthornii Diels[J]. Plant Physiology and Biochemistry, 2021, 167: 366-375. doi: 10.1016/j.plaphy.2021.08.008
|
HARRISON E L, ARCE CUBAS L, GRAY J E, et al. The Influence of Stomatal Morphology and Distribution on Photosynthetic Gas Exchange[J]. The Plant Journal, 2020, 101(4): 768-779. doi: 10.1111/tpj.14560
|
MUIR C D. A Stomatal Model of Anatomical Tradeoffs between Gas Exchange and Pathogen Colonization[J]. Frontiers in Plant Science, 2020(11): 518991.
|
AGUADÉ D, POYATOS R, GÓMEZ M, et al. The Role of Defoliation and Root Rot Pathogen Infection in Driving the Mode of Drought-Related Physiological Decline in Scots Pine (Pinus Sylvestris L. )[J]. Tree Physiology, 2015, 35(3): 229-242. doi: 10.1093/treephys/tpv005
|
MELOTTO M, UNDERWOOD W, HE S Y. Role of Stomata in Plant Innate Immunity and Foliar Bacterial Diseases[J]. Annual Review of Phytopathology, 2008, 46: 101-122. doi: 10.1146/annurev.phyto.121107.104959
|
刘凤娇, 于耸, 刘冠. 生物与非生物逆境胁迫下植物脂质调控机制及其研究进展[J]. 中国油料作物学报, 2023, 45(5): 1062-1072.
|
JARVIS A J, DAVIES W J. The Coupled Response of Stomatal Conductance to Photosynthesis and Transpiration[J]. Journal of Experimental Botany, 1998, 49: 399-406. doi: 10.1093/jxb/49.Special_Issue.399
|
许大全. 气孔的不均匀关闭与光合作用的非气孔限制[J]. 植物生理学通讯, 1995, 31(4): 246-252.
|
SALMON Y, LINTUNEN A, DAYET A, et al. Leaf Carbon and Water Status Control Stomatal and Nonstomatal Limitations of Photosynthesis in Trees[J]. New Phytologist, 2020, 226(3): 690-703. doi: 10.1111/nph.16436
|
BILGIN D D, ZAVALA J A, ZHU J, et al. Biotic Stress Globally Downregulates Photosynthesis Genes[J]. Plant, Cell & Environment, 2010, 33(10): 1597-1613.
|
YANG F, XIAO K Q, PAN H Y, et al. Chloroplast: The Emerging Battlefield in Plant-Microbe Interactions[J]. Frontiersin Plant Science, 2021(12): 637853.
|
HU Y T, ZHONG S F, ZHANG M, et al. Potential Role of Photosynthesis in the Regulation of Reactive Oxygen Species and Defence Responses to Blumeria graminis f. sp. tritici in Wheat[J]. International Journal of Molecular Sciences, 2020, 21(16): 5767. doi: 10.3390/ijms21165767
|
CAMEJO D, GUZMÁN-CEDEÑO Á, MORENO A. Reactive Oxygen Species, Essential Molecules, during Plant-Pathogen Interactions[J]. Plant Physiology and Biochemistry, 2016, 103: 10-23. doi: 10.1016/j.plaphy.2016.02.035
|
NOSEK M, KORNAŚ A, KUŹNIAK E, et al. Plastoquinone Redox State Modifies Plant Response to Pathogen[J]. Plant Physiology and Biochemistry, 2015, 96: 163-170. doi: 10.1016/j.plaphy.2015.07.028
|
HANKE G, MULO P. Plant Type Ferredoxins and Ferredoxin-Dependent Metabolism[J]. Plant, Cell & Environment, 2013, 36(6): 1071-1084.
|
WANG M, RUI L, YAN H J, et al. The Major Leaf Ferredoxin Fd2 Regulates Plant Innate Immunity in Arabidopsis[J]. Molecular Plant Pathology, 2018, 19(6): 1377-1390. doi: 10.1111/mpp.12621
|
WANG Y J, WEI X Y, JING X Q, et al. The Fundamental Role of NOX Family Proteins in Plant Immunity and Their Regulation[J]. International Journal of Molecular Sciences, 2016, 17(6): 805. doi: 10.3390/ijms17060805
|
YOSHIOKA H, ADACHI H, NAKANO T, et al. Hierarchical Regulation of NADPH Oxidase by Protein Kinases in Plant Immunity[J]. Physiological and Molecular Plant Pathology, 2016, 95: 20-26. doi: 10.1016/j.pmpp.2016.03.004
|
SATTLER S E, MÈNE-SAFFRANÉ L, FARMER E E, et al. Nonenzymatic Lipid Peroxidation Reprograms Gene Expression and Activates Defense Markers in Arabidopsis Tocopherol-Deficient Mutants[J]. The Plant Cell, 2006, 18(12): 3706-3720.
|
HOU X, RIVERS J, LEÓN P, et al. Synthesis and Function of Apocarotenoid Signals in Plants[J]. Trends in Plant Science, 2016, 21(9): 792-803. doi: 10.1016/j.tplants.2016.06.001
|
FANELLI C, CASTORIA R, FABBRI A A, et al. Novel Study on the Elicitation of Hypersensitive Response by Polyunsaturated Fatty Acids in Potato Tuber[J]. Natural Toxins, 1992, 1(2): 136-146. doi: 10.1002/nt.2620010213
|
MÈNE-SAFFRANÉ L, DUBUGNON L, CHÉTELAT A, et al. Nonenzymatic Oxidation of Trienoic Fatty Acids Contributes to Reactive Oxygen Species Management in Arabidopsis[J]. Journal of Biological Chemistry, 2009, 284(3): 1702-1708. doi: 10.1074/jbc.M807114200
|
BARBAŚ P, SKIBA D, PSZCZÓŁKOWSKI P, et al. Mechanisms of Plant Natural Immunity and the Role of Selected Oxylipins as Molecular Mediators in Plant Protection[J]. Agronomy, 2022, 12(11): 2619. doi: 10.3390/agronomy12112619
|
KÖSTER P, DEFALCO T A, ZIPFEL C. Ca2+Signals in Plant Immunity[J]. EMBO Journal, 2022, 41(12): e110741. doi: 10.15252/embj.2022110741
|
KUMAR D. Salicylic Acid Signaling in Disease Resistance[J]. Plant Science, 2014, 228: 127-134. doi: 10.1016/j.plantsci.2014.04.014
|
LU Y, YAO J. Chloroplasts at the Crossroad of Photosynthesis, Pathogen Infection and Plant Defense[J]. International Journal of Molecular Sciences, 2018, 19(12): 3900. doi: 10.3390/ijms19123900
|
ZHAO J P, ZHANG X, HONG Y G, et al. Chloroplast in Plant-Virus Interaction[J]. Frontiers in Microbiology, 2016(7): 1565.
|
WANG M Y, JI Z R, YAN H F, et al. Effector Sntf2 Interacted with Chloroplast-Related Protein Mdycf39 Promoting the Colonization of Colletotrichum gloeosporioides in Apple Leaf[J]. International Journal of Molecular Sciences, 2022, 23(12): 6379. doi: 10.3390/ijms23126379
|
XU Q, TANG C L, WANG X D, et al. An Effector Protein of the Wheat Stripe Rust Fungus Targets Chloroplasts and Suppresses Chloroplast Function[J]. Nature Communications, 2019, 10(1): 5571. doi: 10.1038/s41467-019-13487-6
|
JELENSKA J, VAN HAL J A, GREENBERG J T. Pseudomonas Syringae Hijacks Plant Stress Chaperone Machinery for Virulence[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(29): 13177-13182.
|
NAKANO M, MUKAIHARA T. Ralstonia Solanacearum Type Ⅲ Effector RipAL Targets Chloroplasts and Induces Jasmonic Acid Production to Suppress Salicylic Acid-Mediated Defense Responses in Plants[J]. Plant & Cell Physiology, 2018, 59(12): 2576-2589.
|
BHAT S, FOLIMONOVA S Y, COLE A B, et al. Influence of Host Chloroplast Proteins on Tobacco Mosaic Virus Accumulation and Intercellular Movement[J]. Plant Physiology, 2013, 161(1): 134-147.
|
CAPLAN J L, MAMILLAPALLI P, BURCH-SMITH T M, et al. Chloroplastic Protein NRIP1 Mediates Innate Immune Receptor Recognition of a Viral Effector[J]. Cell, 2008, 132(3): 449-462. doi: 10.1016/j.cell.2007.12.031
|
ABBINK T E M, PEART J R, MOS T N M, et al. Silencing of a Gene Encoding a Protein Component of the Oxygen-Evolving Complex of Photosystem Ⅱ Enhances Virus Replication in Plants[J]. Virology, 2002, 295(2): 307-319. doi: 10.1006/viro.2002.1332
|
HUH S U, KIM M J, HAM B K, et al. A Zinc Finger Protein Tsip1 Controls Cucumber Mosaic Virus Infection by Interacting with the Replication Complex on Vacuolar Membranes of the Tobacco Plant[J]. New Phytologist, 2011, 191(3): 746-762. doi: 10.1111/j.1469-8137.2011.03717.x
|
FEKI S, LOUKILI M J, TRIKI-MARRAKCHI R, et al. Interaction between Tobacco Ribulose-1, 5-Biphosphate Carboxylase/Oxygenase Large Subunit (RubisCO-LSU)and the PVY Coat Protein (PVY-CP)[J]. European Journal of Plant Pathology, 2005, 112(3): 221-234. doi: 10.1007/s10658-004-6807-4
|
JIN Y S, MA D Y, DONG J L, et al. The HC-Pro Protein of Potato Virus Y Interacts with NtMinD of Tobacco[J]. Molecular Plant-Microbe Interactions, 2007, 20(12): 1505-1511. doi: 10.1094/MPMI-20-12-1505
|
LI H, MA D Y, JIN Y S, et al. Helper Component-Proteinase Enhances the Activity of 1-Deoxy-D-Xylulose-5-Phosphate Synthase and Promotes the Biosynthesis of Plastidic Isoprenoids in Potato Virus Y-Infected Tobacco[J]. Plant, Cell & Environment, 2015, 38(10): 2023-2034.
|
SHI BB, LIN L, WANG S H, et al. Identification and Regulation of Host Genes Related to Rice Stripe Virus Symptom Production[J]. New Phytologist, 2016, 209(3): 1106-1119. doi: 10.1111/nph.13699
|