FUJIT H.A Mathematical Analysis of Motions of Viscous Incompressible Fluid under Leak or Slip Boundary Conditions[J]. RIMS Kokyuroku, 1994, 888(1):199-216.
|
黄淑梅, 尚月强.三维定常Navier-Stokes方程的有限元计算[J].贵州师范大学学报(自然科学版), 2013, 31(5):31-37. doi: 10.3969/j.issn.1004-5570.2013.05.007
|
刘青, 尚月强.非定常Navier-Stokes方程有限元算子分裂算法[J].西南大学学报(自然科学版), 2019, 41(3):75-83.
|
杨晓成, 尚月强.Navier-Stokes方程的回溯两水平有限元变分多尺度方法[J].西南大学学报(自然科学版), 2017, 39(10):47-57.
|
XU J C.A Novel Two-Grid Method for Semilinear Elliptic Equations[J]. SIAM Journal on Scientific Computing, 1994, 15(1):231-237.
|
XU J C, ZHOU A H.Local and Parallel Finite Element Algorithms Based on Two-Grid Discretizations[J]. Mathematics of Computation, 2000, 69(231):881-910.
|
尚月强, 何银年.不可压缩流动的并行数值方法[J].中国科学:数学, 2013, 43(6):576-589.
|
SHANG Y Q, WANG K.Local and Parallel Finite Element Algorithms Based on Two-Grid Discretizations for the Transient Stokes Equations[J]. Numerical Algorithms, 2010, 54(2):195-218.
|
尚月强, 何银年.定常Stokes方程一种基于完全区域分解的有限元并行算法[J].应用数学和力学, 2010, 31(5):609-617. doi: 10.3879/j.issn.1000-0887.2010.05.012
|
SHANG Y Q, QIN J.Parallel Finite Element Variational Multiscale Algorithms for Incompressible Flow at High Reynolds Numbers[J]. Applied Numerical Mathematics, 2017, 117:1-21. doi: 10.1016/j.apnum.2017.01.018
|
MITCHELL W F.Parallel Adaptive Multilevel Methods with Full Domain Partitions[J]. Applied Numerical Analysis & Computational Mathematics, 2004, 1(1):36-48.
|
LI Y, AN R.Penalty Finite Element Method for Navier-Stokes Equations with Nonlinear Slip Boundary Conditions[J]. International Journal for Numerical Methods in Fluids, 2012, 69(3):550-566. doi: 10.1002/fld.2574
|
LI Y, LI K T.Uzawa Iteration Method for Stokes Type Variational Inequality of the Second Kind[J]. Acta Mathematicae Applicatae Sinica, English Series, 2011, 27(2):303-316. doi: 10.1007/s10255-011-0063-0
|
CHEN Z X.Finite Element Methods and Their Applications[M]. Berlin: Springer-Verlag, 2005.
|
HE Y N, XU J C, ZHOU A H, et al.Local and Parallel Finite Element Algorithms for the Stokes Problem[J]. Numerische Mathematik, 2008, 109(3):415-434. doi: 10.1007/s00211-008-0141-2
|