中华人民共和国农业农村部. 国家数据-2023年度统计数据[EB/OL]. (2024)[2024-12-28]. http://zdscxx.moa.gov.cn:8080/nyb/pc/frequency.jsp.
雷仲仁, 吴圣勇, 王海鸿. 我国蔬菜害虫生物防治研究进展[J]. 植物保护, 2016, 42(1): 1-6, 25.
常晓丽, 武向文, 袁永达, 等. 番茄两种虫媒传播的重要病毒病研究进展[J]. 上海农业学报, 2024, 40(3): 122-127.
渠成, 黄建雷, 车午男, 等. 番茄潜叶蛾对乙基多杀菌素的抗性监测及抗性风险评估[J]. 昆虫学报, 2024, 67(12): 1634-1642.
张古忍, 张文庆, 周强, 等. 生物防治造福人类[J]. 中国科学: 生命科学, 2024, 54(9): 1626-1640.
农向群, 王广君, 王以燕, 等. 生物农药白僵菌杀虫剂的研发进展[J]. 植物保护学报, 2024, 51(2): 278-293.
董小绮, 康兆勇, 刘胜男, 等. 新型植物源天然产物杀虫剂研究进展[J]. 农药学学报, 2023, 25(5): 969-989.
苑士涛, 李梦瑶, 葛亚菲, 等. 5种植物源杀虫剂对美国白蛾的田间药效评价[J]. 安徽农业科学, 2024, 52(4): 136-138, 192.
MAMTA B, RAJAM M V. RNAi Technology: A New Platform for Crop Pest Control[J]. Physiology and Molecular Biology of Plants, 2017, 23(3): 487-501. doi: 10.1007/s12298-017-0443-x
蒲蟄龍, 何等平, 邓德. 孟氏隐唇瓢虫和澳洲瓢虫的繁殖和利用[J]. 中山大学学报(自然科学版), 1959(2): 1-8.
任爱景, 史磊, 王书军, 等. 异色瓢虫对不同蚜虫的喜食性及高龄幼虫的捕食功能反应[J]. 中国植保导刊, 2024, 44(2): 49-52, 64.
CANASSA V F, MARCHI-WERLE L, SCHLICK-SOUZA E C, et al. Exploring the Potential of Delphastus davidsoni (Coleoptera: Coccinellidae) in the Biological Control of Bemisia tabaci MEAM 1 (Hemiptera: Aleyrodidae)[J]. The Florida Entomologist, 2024, 107(1): 1-9.
俞艳, 黄俭, 陶欣燚, 等. 异色瓢虫对不同蔬菜蚜虫的防控效果研究[J]. 上海蔬菜, 2024(5): 40-41, 51.
程英, 周宇航, 冉海燕, 等. 正交试验优化七星瓢虫成虫人工饲料[J]. 应用昆虫学报, 2023, 60(5): 1618-1625.
吕晓东, 刘随存, 贾荟荣, 等. 异色瓢虫人工饲料研究现状和进展[J]. 山西林业科技, 2015, 44(3): 35-36, 66.
徐博文, 李玉艳, 贺玮玮, 等. 捕食蝽滞育的研究进展[J]. 中国生物防治学报, 2025, 41(1): 193-206.
谭晓玲. 东亚小花蝽人工饲料微胶囊应用研究[D]. 咸阳: 西北农林科技大学, 2010.
张帆, 李姝, 肖达, 等. 中国设施蔬菜害虫天敌昆虫应用研究进展[J]. 中国农业科学, 2015, 48(17): 3463-3476.
WANG H GU Y J, SONG R R, et al. Thelytokous Strains Have Better Biocontrol Potential than Arrhenotokous Strains: The Parasitoid Neochrysocharis Formosa on the Invasive Tomato Leafminer Tuta Absoluta as a Case Study[J]. Entomologia Generalis, 2024, 44(2): 377-384. doi: 10.1127/entomologia/2024/2283
李宏, 马小洁, 杨林林, 等. 释放烟蚜茧蜂防治烟田烟蚜的生态效应评估技术[J]. 云南农业大学学报(自然科学), 2024, 39(3): 46-55.
陈浩梁. 麦蛾柔茧蜂规模化人工饲养的关键技术及其冷胁迫的反应机制[D]. 武汉: 华中农业大学, 2011.
LI X W, CHEN T T, CHEN L M, et al. Trichogramma Chilonis Is a Promising Biocontrol Agent Against Tuta Absoluta in China: Results from Laboratory and Greenhouse Experiments[J]. Entomologia Generalis, 2024, 44(2): 357-365. doi: 10.1127/entomologia/2024/2457
邹萍, 曹亮明, 孙守慧, 等. 美国白蛾天敌昆虫应用研究进展[J]. 中国生物防治学报, 2024, 40(5): 1194-1206.
田艳丽, 杨亦心, 章雨璐, 等. 寄主植物及猎物对杂食性天敌烟盲蝽若虫存活和发育的影响[J]. 中国生物防治学报, 2024, 40(3): 542-549.
包善微, 刘芳, 戴红君, 等. 化学农药亚致死剂量对天敌昆虫的影响[J]. 中国植保导刊, 2011, 31(12): 15-18, 10.
农业农村部农药检定所. 已登记球孢白僵菌产品信息查询[DB/OL]. (2024)[2024-12-28]. http://www.icama.org.cn/zwb/dataCenter
农向群, 王广君, 王以燕, 等. 生物农药白僵菌杀虫剂的研发进展[J]. 植物保护学报, 2024, 51(2): 278-293.
WAKIL W, BOUKOUVALA M C, KAVALLIERATOS N G, et al. Impact of Three Entomopathogenic Fungal Isolates on the Growth of Tomato Plants-Ectoapplication to Explore Their Effect on Tetranychus Urticae[J]. Agronomy, 2024, 14(4): 665. doi: 10.3390/agronomy14040665
KIRISIK M, ERLER F. Isolation and Molecular Identification of Entomopathogenic Fungi from the Western Flower Thrips[Frankliniella occidentalis (Pergande)], and Evaluation of Their Efficacy Against the Pest[J]. Journal of Plant Diseases and Protection, 2024, 131(3): 719-730. doi: 10.1007/s41348-024-00881-6
GRAF T, KOCH T, ENKERLI J, et al. How to Control Nasty Scarabs? Effectiveness of the Generalist Entomopathogenic Fungus Metarhizium Brunneum Against Garden Chafer Larvae[J]. Biological Control, 2024, 198: 105625. doi: 10.1016/j.biocontrol.2024.105625
ZHANG Y, DONG R, HU S Y, et al. Identification of an Entomopathogenic Fungus, Pseudozyma flocculosa (Traquair, Shaw & Jarvis), and Its Efficacy Against Tetranychus urticae Koch[J]. Horticulturae, 2024, 10(3): 221. doi: 10.3390/horticulturae10030221
SONG G, SHIN D, KIM J S. Microbiome Changes in Akanthomyces attenuatus JEF-147-Infected Two-Spotted Spider Mites[J]. Journal of Invertebrate Pathology, 2024, 204: 108102. doi: 10.1016/j.jip.2024.108102
崔哲雨, 黄念庭, 何鹏, 等. 苏云金芽孢杆菌在害虫防治领域的应用进展[J]. 现代面粉工业, 2023, 37(1): 13-18.
JIN G, JEONG J S, KIM I H, et al. Suppression of a Transcriptional Regulator, HexA, Is Essential for Triggering the Bacterial Virulence of the Entomopathogen, Xenorhabdus hominickii[J]. Journal of Invertebrate Pathology, 2024, 207: 108219. doi: 10.1016/j.jip.2024.108219
BAKIRDOGEN M A, EROGLU G B. A Highly Active Chitinase-A of Serratia ficaria Isolated from Pieris brassicae (Lepidoptera: Pieridae)[J]. Crop Protection, 2024, 179: 106623. doi: 10.1016/j.cropro.2024.106623
张倪铭, 陈李林, 倪德芳, 等. 一株茶毒蛾病原细菌的分离、鉴定及致病性测定[J]. 福建农林大学学报(自然科学版), 2024, 53(1): 22-28.
AKRAM M, IQUEBAL M A, BAPTALA K G, et al. Genome Assembly and Annotation of Spilosoma Obliqua Multicapsid Nucleopolyhedrovirus from Bihar Hairy Caterpillar, an Agriculturally Important Insect Pest[J]. Journal of Phytopathology, 2024, 172(3): e13308. doi: 10.1111/jph.13308
PAVAN J S, PATEL N B, RAGHUNANDAN B L, et al. Comparative Efficacy of Nucleopolyhedrovirus (NPV) Alone and in Conjunction with Chemical Insecticides Against Fall Armyworm, Spodoptera frugiperda (J. E. Smith) (Noctuidae: Lepidoptera) under Laboratory Conditions[J]. International Journal of Tropical Insect Science, 2024, 44(3): 1475-1486. doi: 10.1007/s42690-024-01258-w
杨炀. 桃蚜浓核病毒MpDV2基因组扩增、转录分析及植物对其传播的影响[D]. 咸阳: 西北农林科技大学, 2024.
OLAZARAN-SANTIBAÑEZ F E, HEINZ-CASTRO R T Q, RIVERA G, et al. Evaluation of Ethanol Extract of Magnolia alejandrae (Magnoliales: Magnoliaceae) Against Tetranychus merganser (Acari: Tetranychidae)[J]. Journal of Entomological Science, 2024, 59(2): 193-210.
OLIVEIRA J A C, FERNANDES L A, FIGUEIREDO K G, et al. Effects of Essential Oils on Biological Characteristics and Potential Molecular Targets in Spodoptera Frugiperda[J]. Plants, 2024, 13(13): 1801. doi: 10.3390/plants13131801
何玲, 张建国, 白伟, 等. 两种植物源杀虫剂对猕猴桃小薪甲的田间药效试验[J]. 农药科学与管理, 2024, 45(1): 44-47.
姚满. 苦参碱在土壤和水体环境中的行为研究[D]. 咸阳: 西北农林科技大学, 2016.
LENGAI G M W, MUTHOMI J W, MBEGA E R. Phytochemical Activity and Role of Botanical Pesticides in Pest Management for Sustainable Agricultural Crop Production[J]. Scientific African, 2020, 7: e00239. doi: 10.1016/j.sciaf.2019.e00239
TIMOFEEV S A, SHUKHALOVA A G, SENDERSKIY I V, et al. Two Insecticidal Neurotoxins from Parasitoid Wasp Habrobracon Hebetor Venom and Their Potential Use in Biocontrol[J]. BioControl, 2024, 69(1): 65-75. doi: 10.1007/s10526-023-10238-x
RÁDIS-BAPTISTA G, KONNO K. Spider and Wasp Acylpolyamines: Venom Components and Versatile Pharmacological Leads, Probes, and Insecticidal Agents[J]. Toxins, 2024, 16(6): 234. doi: 10.3390/toxins16060234
MU X, LEI R, YAN S Q, et al. The LysR Family Transcriptional Regulator ORF-L16 Regulates Spinosad Biosynthesis in Saccharopolyspora spinosa[J]. Synthetic and Systems Biotechnology, 2024, 9(4): 609-617. doi: 10.1016/j.synbio.2024.05.001
KAMOU N, PAPAFOTI A, CHATZAKI V, et al. Exploring the Effects of Entomopathogenic Nematode Symbiotic Bacteria and Their Cell Free Filtrates on the Tomato Leafminer Tuta Absoluta and Its Predator Nesidiocoris Tenuis[J]. Journal of Invertebrate Pathology, 2024, 206: 108181. doi: 10.1016/j.jip.2024.108181
TOMAR P, THAKUR N, SIDHU A K, et al. The Isolation, Identification, and Insecticidal Activities of Indigenous Entomopathogenic Nematodes (Steinernema carpocapsae) and Their Symbiotic Bacteria (Xenorhabdus nematophila) Against the Larvae of Pieris Brassicae[J]. Horticulturae, 2023, 9(8): 874. doi: 10.3390/horticulturae9080874
YANG Q F, MEN X Y, ZHAO W L, et al. Flower Strips as a Bridge Habitat Facilitate the Movement of Predatory Beetles from Wheat to Maize Crops[J]. Pest Management Science, 2021, 77(4): 1839-1850. doi: 10.1002/ps.6209
LI Z, CHANG C Y, YUAN Y Y, et al. Functional Plant, Cnidium Monnieri, Facilitates the Conservation and the Biocontrol Performance of Natural Enemies[J]. The Innovation Geoscience, 2023, 1(3): 100045. doi: 10.59717/j.xinn-geo.2023.100045
GAO Y L, ALYOKHIN A, ZHANG R Z, et al. Proactive Resistance Management for Sustaining the Efficacy of RNA Interference for Pest Control[J]. Journal of Economic Entomology, 2024, 117(4): 1306-1308. doi: 10.1093/jee/toae099
CUCCATO G, POLYNIKIS A, SICILIANO V, et al. Modeling RNA Interference in Mammalian Cells[J]. BMC Systems Biology, 2011, 5: 19. doi: 10.1186/1752-0509-5-19
AGRAWAL N, DASARADHI P V N, MOHMMED A, et al. RNA Interference: Biology, Mechanism, and Applications[J]. Microbiology and Molecular Biology Reviews, 2003, 67(4): 657-685. doi: 10.1128/MMBR.67.4.657-685.2003
FILIPOWICZ W. RNAi: The Nuts and Bolts of the RISC Machine[J]. Cell, 2005, 122(1): 17-20. doi: 10.1016/j.cell.2005.06.023
LI X Y, XIAO J D, CHENG X Q, et al. Nanomaterial-Encapsulated dsRNA of Ecdysone-Induced Early Gene E75, a Potential RNAi-Based SIT Strategy for Pest Control Against Bactrocera dorsalis[J]. International Journal of Biological Macromolecules, 2024, 263: 130607. doi: 10.1016/j.ijbiomac.2024.130607
XU Q Q, SHANG F, FENG S Y, et al. Design the Fusion Double-Strand RNAs to Control Two Global Sap-Sucking Pests[J]. Pesticide Biochemistry and Physiology, 2024, 205: 106114. doi: 10.1016/j.pestbp.2024.106114
DONG Y, ZHANG Q, MAO Y R, et al. Control of Two Insect Pests by Expression of a Mismatch Corrected Double-Stranded RNA in Plants[J]. Plant Biotechnology Journal, 2024, 22(7): 2010-2019. doi: 10.1111/pbi.14321
CHEN Y, SHI Y F, WANG Z G, et al. DsRNA Engineer: A Web-Based Tool of Comprehensive dsRNA Design for Pest Control[J]. Trends in Biotechnology, 2025, 43(4): 969-983. doi: 10.1016/j.tibtech.2025.01.002
CHUNG S H, FENG H L, JANDER G. Engineering Pest Tolerance through Plant-Mediated RNA Interference[J]. Current Opinion in Plant Biology, 2021, 60: 102029. doi: 10.1016/j.pbi.2021.102029
XUE Q, LI J J, VEREECKEN S, et al. Functionally Modified Graphene Oxide as an Alternative Nanovehicle for Enhanced dsRNA Delivery in Improving RNAi-Based Insect Pest Control[J]. Journal of Agricultural and Food Chemistry, 2024, 72(41): 22512-22523.
ARJUNAN N, THIRUVENGADAM V, SUSHIL S. Nanoparticle-Mediated dsRNA Delivery for Precision Insect Pest Control: A Comprehensive Review[J]. Molecular Biology Reports, 2024, 51(1): 355. doi: 10.1007/s11033-023-09187-6
MA Z Z, ZHENG Y, CHAO Z J, et al. Visualization of the Process of a Nanocarrier-Mediated Gene Delivery: Stabilization, Endocytosis and Endosomal Escape of Genes for Intracellular Spreading[J]. Journal of Nanobiotechnology, 2022, 20(1): 124. doi: 10.1186/s12951-022-01336-6
YAN S, LI M J, JIANG Q H, et al. Self-Assembled Co-Delivery Nanoplatform for Increasing the Broad-Spectrum Susceptibility of Fall Armyworm Toward Insecticides[J]. Journal of Advanced Research, 2025, 67: 93-104. doi: 10.1016/j.jare.2024.01.031
MA Z Z, ZHOU H, WEI Y L, et al. A Novel Plasmid-Escherichia Coli System Produces Large Batch dsRNAs for Insect Gene Silencing[J]. Pest Management Science, 2020, 76(7): 2505-2512. doi: 10.1002/ps.5792
ORTOLÁ B, CORDERO T, HU X, et al. Intron-Assisted, Viroid-Based Production of Insecticidal Circular Double-Stranded RNA in Escherichia Coli[J]. RNA Biology, 2021, 18(11): 1846-1857. doi: 10.1080/15476286.2021.1872962
LEVANOVA A A, PORANEN M M. Utilization of Bacteriophage Phi6 for the Production of High-Quality Double-Stranded RNA Molecules[J]. Viruses, 2024, 16(1): 166. doi: 10.3390/v16010166
NIEHL A, SOININEN M, PORANEN M M, et al. Synthetic Biology Approach for Plant Protection Using dsRNA[J]. Plant Biotechnology Journal, 2018, 16(9): 1679-1687. doi: 10.1111/pbi.12904
WENNINGER E J, DEGREY S P, INSINGA J, et al. Responses of Non-Target Arthropods to the dsRNA Bioinsecticide CalanthaTM and Conventional Insecticides Targeting Colorado Potato Beetle, Leptinotarsa Decemlineata (Say)[J]. American Journal of Potato Research, 2025, 102(2): 129-151. doi: 10.1007/s12230-025-09979-5
BRADFORD B Z, CHAPMAN S A, GROVES R L. Evaluation of Tank Mix Partners on the Efficacy of the Novel Biopesticide Calantha (Ledprona) Against First-Generation Colorado Potato Beetle, 2023[J]. Arthropod Management Tests, 2024, 49(1): tsae055. doi: 10.1093/amt/tsae055
U.S. Environmental Protection Agency. Pesticide Product Label: Calantha[EB/OL]. (2024-02-29)[2024-12-28]. https://www3.epa.gov/pesticides/chem_search/ppls/094614-00002-20240229.pdf
GREENLIGHT BIOSCIENCES. Calantha®: How it works[EB/OL]. (2024). [2024-12-28] https://www.calanthaag.com/how-it-works.
NARVA K, TOPRAK U, ALYOKHIN A, et al. Insecticide Resistance Management Scenarios Differ for RNA-Based Sprays and Traits[J]. Insect Molecular Biology, 2025, 34(4): 518-526. doi: 10.1111/imb.12986
YANG L, QIN C Y, CHEN Y, et al. Fusion dsRNA in Targeting Salivary Protein Genes Enhance the RNAi-Based Aphid Control[J]. Pesticide Biochemistry and Physiology, 2023, 197: 105645. doi: 10.1016/j.pestbp.2023.105645
ZHANG J, YE C, WANG Z G, et al. DsRNAs Spray Enhanced the Virulence of Entomopathogenic Fungi Beauveria bassiana in Aphid Control[J]. Journal of Pest Science, 2023, 96(1): 241-251. doi: 10.1007/s10340-022-01508-1