SHIGEDADA N, KAWASAKI K, TERAMOTO. Spatial Segregation of Interacting Species [J]. J Theore Biol, 1979(79):83-99.
|
CHOI Y S, LUI R, YAMADA Y. Existence of Global Solution for the Shigesada-Kawasaki-Teramoto Model with Strongly Coupled Cross-Diffusion [J]. Discrete Contin Dyn Syst, 2004(10):719-730.
|
KUTO K. Bifurcation Branch of Stationary Solutions for a Lotka-Volterra Cross-Diffusion System in a Spatially Heterogeneous Environment [J]. Nonlinear Anal Real World Appl, 2009(2):943-965.
|
KUTO K, YAMADA Y. Positive Solutions for Lotka-Volterra Competition Systems with Large Cross-Diffusion [J]. Appl Anal, 2010, 89(7):1037-1066. doi: 10.1080/00036811003627534
|
KUTO K, YAMADA Y. Multiple Coexistence States for a Prey-Predator System with Cross-Diffusion [J]. J Differential Equations, 2004, 197(2):315-348. doi: 10.1016/j.jde.2003.08.003
|
LOU Y, NI W M, YOTSUTANI S. On a Limiting System in the Lotka-Volterra Competition with Cross-Diffusion [J]. Discrete Contin Dyn Syst, 2004, 10:435-458.
|
ODA K. Stationary Patterns for a Lotka-Volterra Cooperative Model with a Density-Dependent Diffusion term [J]. Funkcial Ekvac, 2006, 52(1):93-112.
|
ZHOU J, KIM C G. Positive Solutions for a Lotka-Volterra Prey-Predator Model with Cross-Diffusion of Fractional Type [J]. Results in Mathematics, 2013, 65(3):293-320.
|
DANCER E N. On Positive Solutions of Some Pairs of Differential Equations [J]. Trans Am Math Soc, 1984, 284(2):729-743. doi: 10.1090/S0002-9947-1984-0743741-4
|
李海霞.一类捕食-食饵模型共存解的多重性[J].西北师范大学学报(自然科学版), 2015, 51(4):6-9.
|
PENG R, WANG M X. On Multiplicity and Stability of a Diffusive Prey-Predator model [J]. J Math Anal Appl, 2006, 316:256-268. doi: 10.1016/j.jmaa.2005.04.033
|
ZHOU J, SHI J P. The Existence, Bifurcation and Stability of Positive Stationary Solution of a Diffusive Leslie-Gower Predator-Prey Model with Holling-Type Ⅱ Functional Responses [J]. J Math Anal Appl, 2013, 405:618-630. doi: 10.1016/j.jmaa.2013.03.064
|
ZHOU J, KIM C G, SHI J P. Positive Steady State Solutions of a Diffusive Leslie-Gower Predator-Prey Model with Holling Type Ⅱ Functional Response and Cross-Diffusion [J]. Discrete and Continuous Dynamical Systems, 2014, 34:3875-3899. doi: 10.3934/dcdsa
|
ZHOU J. Positive Solutions for a Modified Leslie-Gower Prey-Predator model with Crowley-Martin Functional Response [J]. Nonlinear Differ Equ Appl, 2014, 21:621-661. doi: 10.1007/s00030-013-0260-z
|
CRANDALL M G, RABNOWTIZ P H. Bifurcation from Simple Eigenvalues [J]. J Funct Anal, 1971, 8(2):321-340. doi: 10.1016/0022-1236(71)90015-2
|
CRANDALL M G, RABNOWTIZ P H. Bifurcation, Perturbation of Simple Eigenvalues, and Its Linearized Stability [J]. Arch Ration Mech Anal, 1973, 52(2):161-180.
|
SHI J P. Persistence and Bifurcation of Degenerate Solutions [J]. J Funct Anal, 1999, 169(2):494-531. doi: 10.1006/jfan.1999.3483
|
KATO T. Perturbation Theory for Linear Operators [M]. New York:Spring, 1966.
|
王明新.非线性椭圆型方程[M].北京:科学出版社, 2010.
|