LINK B A, MEGASON S G. Zebrafish as a Model for Development[M]//Sourcebook of Models for Biomedical Research. Clifton: Humana Press, 2008.
|
REMBOLD M, LAHIRI K, FOULKES N S, et al. Transgenesis in Fish: Efficient Selection of Transgenic Fish by Co-Injection with a Fluorescent Reporter Construct[J]. Nature Protocols, 2006, 1(3): 1133-1139. doi: 10.1038/nprot.2006.165
|
SUMMERTON J, WELLER D. Morpholino Antisense Oligomers: Design, Preparation, and Properties[J]. Antisense Nucleic Acid Drug Dev, 1997, 7(3): 187-195. doi: 10.1089/oli.1.1997.7.187
|
SANDER J D, DAHLBORG E J, GOODWIN M J, et al. Selection-Free Zinc-Finger-Nuclease Engineering by Context-Dependent Assembly (CoDA)[J]. Nat Methods, 2011, 8(1): 67-69. doi: 10.1038/nmeth.1542
|
SANDER J D, CADE L, KHAYTER C, et al. Targeted Gene Disruption in Somatic Zebrafish Cells Using Engineered TALENs[J]. Nat Biotechnol, 2011, 29(8): 697-698. doi: 10.1038/nbt.1934
|
HWANG W Y, FU Y, REYON D, et al. Efficient Genome Editing in Zebrafish Using a CRISPR-Cas System[J]. Nature Biotechnology, 2013, 31(3): 227-229. doi: 10.1038/nbt.2501
|
DOUDNA J A, CHARPENTIER E. Genome Editing. The New Frontier of Genome Engineering with CRISPR-Cas9[J]. Science, 2014, 346(6213): 1077.
|
CONG L, RAN F A, COX D, et al. Multiplex Genome Engineering Using CRISPR/Cas Systems[J]. Science, 2013, 339(6121): 819-823. doi: 10.1126/science.1231143
|
MALI P, YANG L, ESVELT K M, et al. RNA-Guided Human Genome Engineering Via Cas9[J]. Science, 2013, 339(6121): 823-826. doi: 10.1126/science.1232033
|
SUNG Y H, KIM J M, KIM H T, et al. Highly Efficient Gene Knockout in Mice and Zebrafish with RNA-Guided Endonucleases[J]. Genome Research, 2014, 24(1): 125-131. doi: 10.1101/gr.163394.113
|
LI D, QIU Z, SHAO Y, et al. Heritable Gene Targeting in the Mouse and Rat Using a CRISPR-Cas System[J]. Nature Biotechnology, 2013, 31(8): 681-683. doi: 10.1038/nbt.2661
|
BASSETT A R, TIBBIT C, PONTING C P, et al. Highly Efficient Targeted Mutagenesis of Drosophila with the CRISPR/Cas9 System[J]. Cell Reports, 2013, 4(1): 220-228. doi: 10.1016/j.celrep.2013.06.020
|
FRIEDLAND A E, TZUR Y B, ESVELT K M, et al. Heritable Genome Editing in C. Elegans Via a CRISPR-Cas9 System[J]. Nature Methods, 2013, 10(8): 741-743. doi: 10.1038/nmeth.2532
|
GUO X, ZHANG T, HU Z, et al. Efficient RNA/Cas9-Mediated Genome Editing in Xenopus Tropicalis[J]. Development, 2014, 141(3): 707-714. doi: 10.1242/dev.099853
|
HAI T, TENG F, GUO R, et al. One-Step Generation of Knockout Pigs by Zygote Injection of CRISPR/Cas System[J]. Cell Research, 2014, 24(3): 372-375. doi: 10.1038/cr.2014.11
|
YANG D, XU J, ZHU T, et al. Effective Gene Targeting in Rabbits Using RNA-Guided Cas9 Nucleases[J]. Journal of Molecular Cell Biology, 2014, 6(1): 97-99. doi: 10.1093/jmcb/mjt047
|
LI J F, NORVILLE J E, AACH J, et al. Multiplex and Homologous Recombination-Mediated Genome Editing in Arabidopsis and Nicotiana Benthamiana Using Guide RNA and Cas9[J]. Nature Biotechnology, 2013, 31(8): 688-691. doi: 10.1038/nbt.2654
|
NIU Y, SHEN B, CUI Y, et al. Generation of Gene-Modified Cynomolgus Monkey Via Cas9/RNA-Mediated Gene Targeting in One-Cell Embryos[J]. Cell, 2014, 156(4): 836-843. doi: 10.1016/j.cell.2014.01.027
|
ZHOU J, SHEN B, ZHANG W, et al. One-Step Generation of Different Immunodeficient Mice with Multiple Gene Modifications by CRISPR/Cas9 Mediated Genome Engineering[J]. The International Journal of Biochemistry & Cell Biology, 2014, 46(1): 49-55.
|
YANG H, WANG H, SHIVALILA C S, et al. One-Step Generation of Mice Carrying Reporter and Conditional Alleles by CRISPR/Cas-Mediated Genome Engineering[J]. Cell, 2013, 154(6): 1370-1379. doi: 10.1016/j.cell.2013.08.022
|
KONERMANN S, BRIGHAM M D, TREVINO A E, et al. Genome-Scale Transcriptional Activation by an Engineered CRISPR-Cas9 Complex[J]. Nature, 2015, 517(7536): 583-588.
|
ZHOU W B, BOUCHER R C, BOLLIG F, et al. Characterization of Mesonephric Development and Regeneration Using Transgenic Zebrafish[J]. American Journal of Physiology-Renal Physiology, 2010, 299(5): F1040-F1047. doi: 10.1152/ajprenal.00394.2010
|
WINGERT R A, DAVIDSON A J. The Zebrafish Pronephros: A Model to Study Nephron Segmentation[J]. Kidney International, 2008, 73(10): 1120-1127. doi: 10.1038/ki.2008.37
|
WINGERT R A, SELLECK R, YU J, et al. The Cdx Genes and Retinoic Acid Control the Positioningand Segmentation of the Zebrafish Pronephros[J]. PLoS Genet, 2007, 3(10): 1922-1938.
|
BONSIB S M. Atlas of Medical Renal Pathology[M]. New York: Springer New York, 2013.
|
VASSILEV P M, GUO L, CHEN X Z, et al. Polycystin-2isanovel Cationchannel Implicatedin Defective Intracellular Ca2+ Homeostasis in Polycystic Kidney Disease[J]. Biochemical and Biophysical Research Communications, 2001, 282(1): 341-350. doi: 10.1006/bbrc.2001.4554
|
SUN Z, AMSTERDAM A, PAZOUR G J, et al. A Genetic Screen in Zebrafish Identifies Cilia Genes as a Principal Cause of Cystic Kidney[J]. Development, 2004, 131(16): 4085-4093. doi: 10.1242/dev.01240
|
BEUSCHLEIN F, BOULKROUN S, OSSWALD A, et al. Somatic Mutations in ATP1A1 and ATP2B3 Lead to Aldosterone-Producing Adenomas and Secondary Gypertension[J]. Nat Genet, 2013, 45(4): 440-444. doi: 10.1038/ng.2550
|
BLASIOLE B, CANFIELD V A, VOLLRATH M A, et al. Separate Na, K-ATPase Genes Are Required for Otolith Formation and Semicircular Canal Development in Zebrafish[J]. Dev Biol, 2006, 294(1): 148-160. doi: 10.1016/j.ydbio.2006.02.034
|
ROSSI A, KONTARAKIS Z, GERRI C, et al. Genetic Compensation Induced by Deleterious Mutations But Not Gene Knockdowns[J]. Nature, 2015, 524(7564): 230-233. doi: 10.1038/nature14580
|