CARLSON J F, THEVENAZ J. The Classification of Endo-Trivial Modules [J]. Invent Math, 2004, 158(2): 389-411.
|
CARLSON J F, ROUQUIER R. Self-Equivalences of Stable Module Categories [J]. Math Z, 2000, 233(1): 165-178. doi: 10.1007/PL00004789
|
PEREPELITSKY P N. p-Permutation Equivalences Between Blocks of Finite Groups [D]. California: University of California, 2014.http://escholarship.org/uc/item/49p3r4gg
|
GREEN J A. A Transfer Theorem for Modular Representations [J]. Journal of Algebra, 1964, 1(1): 73-84. doi: 10.1016/0021-8693(64)90009-2
|
GREEN J A. Axiomatic Representation Theory for Finite Groups [J]. Journal of Pure & Applied Algebra, 1971, 1(1): 41-77.
|
COCONET T, MARCUS A. Module Covers and the Green Correspondence [J]. Journal of Algebra, 2015, 432: 62-71. doi: 10.1016/j.jalgebra.2015.03.004
|
徐明曜.有限群导引:上册[M].北京:科学出版社, 1999.
|
徐明曜, 黄建华, 李慧陵.有限群导引:下册[M].北京:科学出版社, 1999.
|
WEBB P. A Course in Finite Group Representation Theory [M]. New York: Cambridge University Press, 2016.
|
THEVENAZ J. G-Algebras and Modular Representation Theory [M]. Oxford: The Clarendon Press, 1995.
|
LASSUEUR C, MALLE G, SCHULTE E. Simple Endotrivial Modules for Quasi-Simple Groups [J]. Journal Für Die Reine Und Angewandte Mathematik, 2016, 712: 141-174.
|
PARKER C, STROTH G. Strongly p-Embedded Subgroups [J]. Pure & Applied Mathematics Quartely, 2009, 7(4): 797-858.
|
BLAU H, MICHLER G. Modular Representation Theory of Finite Groups with T.I. Sylow p-Subgroups [J]. Transactions of The American Mathematical Society, 1990, 319(2): 417-468.
|