CASTILLO-CHAVEZ C, YAKUBU A A. Discrete-Time SIS Models with Complex Dynamics [J]. Nonlinear Anal, 2001, 47: 4753-4762. doi: 10.1016/S0362-546X(01)00587-9
李文娟. 一类离散SIRS传染病模型的稳定性分析[D]. 太原: 山西大学, 2015.http://d.wanfangdata.com.cn/Periodical/D789456
HU Z, TENG Z, JIANG H. Stability Analysis in a Class of Discrete SIRS Epidemic Models [J]. Nonlinear Anal, 2012, 13: 2017-2033. doi: 10.1016/j.nonrwa.2011.12.024
THIEME H R. Covergence Results and a Poincare-Bendixson Trichotomy for Asymptotically Autonomous Differential Equations [J]. Math Biol, 1992, 30: 755-763.
曹慧, 王玉萍.具有饱和治愈率的离散SIS传染病模型的动力学性[J].陕西科技大学学报(自然科学版), 2013, 31(5): 147-150.
CAO H, ZHOU Y C, MA Z E. Bifurcation Analysis of a Discrete SIS Model with Bilinear Incidence Depending on New Infection [J]. Mathmatical Biosciences and Engineering, 2013, 10: 1339-1417.
CHEN Q L, TENG Z D, WANG L, et al. The Existence of Codimension-Two Bifurcation in a Discrete SIS Epidemic Model with Standard Incidence [J]. Nonlinear Dyn, 2013, 71: 55-73. doi: 10.1007/s11071-012-0641-6
GRANDMONET J M. Nonlinear Difference Equations, Bifurcations and Chaos [J]. An Introduction Research in Economics, 2008, 62: 120-177.
HU Z J, TENG Z D, ZHANG L. Stability and Bifurcation Analysis in a Discrete SIR Epidemic Model [J]. Mathematics and Computers in Simulation, 2014, 97: 80-93. doi: 10.1016/j.matcom.2013.08.008
曹慧, 周义仓.具有饱和治疗的离散SEIS结核病模型的动力学性态[J].数学的实践与认识, 2014, 44(18): 209-221.
ALLEN L J S, VAN DEN DRIESSCHE P. The Basic Reproduction Number inSsome Discrete-Time Epidemic Models [J]. Difference Equ Appl, 2008, 14: 1127-1147. doi: 10.1080/10236190802332308
龚德恩.经济控制论[M].北京:高等教育出版社, 2009.
BEYN W J, LORENZ J. Center Manifolds of Dynamical Systems Under Discretization [J]. Numer Funct Anal Optimiz, 1987, 9: 381-414. doi: 10.1080/01630568708816239
CELIK C, DUMAN O. Allee Effect in a Discrete-Time Predator-Prey System [J]. Chaos Soliton & Fractals, 2009, 40: 1956-1962.