FALCONER K J. A Result on the Steiner Symmetrization of a Compact Set[J]. J London Math Soc, 1976, 14(2):385-386.
|
GARDNER R J. The Brunn-Minkowski Inequality[J]. Bull Amer Math Soc, 2002, 39(3):355-405. doi: 10.1090/S0273-0979-02-00941-2
|
GARDNER R J. Geometric Tomography[M]. New York:Cambridge University Press, 2006.
|
LIN Y J. Smoothness of the Steiner Symmetrization[J]. Proc Amer Math Soc, 2018, 146(1):345-357.
|
LIN Y J. Affine Orlicz Polya-Szego Principle for Log-Concave Functions[J]. J Funct Anal, 2017, 273(10):3295-3326. doi: 10.1016/j.jfa.2017.08.017
|
CIANCHI A, FUSCO N. Functions of Bounded Variation and Rearrangements[J]. Arch Ration Mech Anal, 2002, 165(1):1-40. doi: 10.1007/s00205-002-0214-9
|
BIANCHI G, KLAIN D A, LUTWAK E, et al. A Countable Set of Directions is Sufficient for Steiner Symmetrization[J]. Adv in Appl Math, 2011, 47(4):869-873. doi: 10.1016/j.aam.2011.04.005
|
BURCHARD A. Steiner Symmetrization is Continuous in W1, pJ]. Geom Funct Anal, 1997, 7(5):823-860. doi: 10.1007/s000390050027
|
CIANCHI A, CHLEBIK M, FUSCO N. The Perimeter Inequality Under Steiner Symmetrization:Cases of Equality[J]. Ann of Math, 2005, 162(1):525-555. doi: 10.4007/annals
|
GARDNER R J. Symmetrals and X-Rays of Planar Convex Bodies[J]. Arch Math (Basel), 1983, 41(2):183-189. doi: 10.1007/BF01196876
|
KLARTAG B. An Isomorphic Version of the Slicing Problem[J]. J Funct Anal, 2005, 218(2):372-394. doi: 10.1016/j.jfa.2004.05.003
|
KLARTAG B, Milman V D. Isomorphic Steiner Symmetrization[J]. Invent Math, 2003, 153(3):463-485. doi: 10.1007/s00222-003-0290-y
|
CIANCHI A, LUTWAK E, YANG D, et al. Affine Moser-Trudinger and Morrey-Sobolev inequalities[J]. Calc Var Partial Differential Equations, 2009, 36(3):419-436. doi: 10.1007/s00526-009-0235-4
|
MEYER M, PAJOR A. On the Blaschke Santalo Inequality[J]. Arch Math, 1990, 55(1):82-93. doi: 10.1007/BF01199119
|
FRADELIZI M, MEYER M. Some Functional Forms of Blaschke-Santalo Inequality[J]. Math Z, 2007, 256(2):379-395. doi: 10.1007/s00209-006-0078-z
|
ARTSTEIN-AVIDAN S, KLARTAG B, MILMAN V. The Santalo Point of a Function, and a Functional Form of the Santalo Inequality[J]. Mathematika, 2004, 51(2):33-48.
|
LEHEC J. A Direct Proof of the Functional Santalo Inequality[J]. C R Math Acad Sci Paris, 2009, 347(1-2):55-58. doi: 10.1016/j.crma.2008.11.015
|
SCHNEIDER R. Convex Bodies:The Brunn-Minkowski Theory[M]. 2 th ed. New York:Cambridge University Press, 2014.
|
CIANCHI A, FUSCO N. Steiner Symmetric Extremals in Polya-Szego Type Inequalities[J]. Adv Math, 2006, 203(2):637-728.
|
朱华, 王世莉, 姚纯青, 等.常曲率空间中具有平行平均曲率向量的伪脐子流形[J].西南大学学报(自然科学版), 2016, 38(10):74-78.
|
朱保成, 徐文学. Wills猜想的强化形式[J].西南师范大学学报(自然科学版), 2016, 41(10):20-25.
|