DEHAENE S, DEHAENE-LAMBERTZ G, COHEN L. Abstract Representations of Numbers in the Animal and Human Brain[J]. Trends in Neurosciences, 1998, 21(8):355-361. doi: 10.1016/S0166-2236(98)01263-6
LIBERTUS M E, BRANNON E M. Behavioral and Neural Basis of Number Sense in Infancy[J]. Current Directions in Psychological Science, 2009, 18(6):346-351. doi: 10.1111/j.1467-8721.2009.01665.x
PIAZZA M. Neurocognitive Start-Up Tools for Symbolic Number Representations[J]. Trends in Cognitive Sciences, 2010, 14(12):542-551. doi: 10.1016/j.tics.2010.09.008
HOLLOWAY I D, PRICE G R, ANSARI D. Common and Segregated Neural Pathways for the Processing of Symbolic andNonsymbolic Numerical Magnitude:An fMRI Study[J]. Neuroimage, 2010, 49(1):1006-1017. doi: 10.1016/j.neuroimage.2009.07.071
MATEJKO AA, ANSARI D. Trajectories of Symbolic and Nonsymbolic Magnitude Processing in the First Year of Formal Schooling[J]. Plos One, 2016, 11(3):1-15.
DIETRICH J F, HUBER S, MOELLER K, et al. The Influence of Math Anxiety on Symbolic and Non-Symbolic Magnitude Processing[J]. Frontiers in Psychology, 2015, 6(1621):1-10.
LINSEN S, VERSCHAFFEL L, REYNVOET B, et al. The Association Between Numerical Magnitude Processing and Mental Versus Algorithmic Multi-Digit Subtraction in Children[J]. Learning and Instruction, 2015, 35:42-50. doi: 10.1016/j.learninstruc.2014.09.003
MATTHEWS P G, LEWIS M R, HUBBARD E M. Individual Differences inNonsymbolic Ratio Processing Predict Symbolic Math Performance[J]. Psychological Science, 2015, 27(2):191-202.
HOLLOWAY I D, ANSARI D. Developmental Specialization in the Right Intraparietal Sulcus for the Abstract Representation of Numerical Magnitude[J]. Journal of Cognitive Neuroscience, 2010, 22(11):2627-2637. doi: 10.1162/jocn.2009.21399
SOKOLOWSKI H M, FIAS W, MOUSA A, et al. Common and Distinct Brain Regions in Both Parietal and Frontal Cortex Support Symbolic and Nonsymbolic Number Processing in Humans:A Functional Neuroimaging Meta-Analysis[J]. Neuroimage, 2017, 146:376-394. doi: 10.1016/j.neuroimage.2016.10.028
SOKOLOWSKI H M. Common and Distinct Brain Regions Support Numerical and Non-Numerical Magnitude Processing: A FunctionalNeuroimaging Meta-Analysis[D]. London Ontario Canada: The University of Western Ontario, 2015.
SASANGUIE D, SMEDT B D, REYNVOET B. Evidence for Distinct Magnitude Systems for Symbolic and Non-Symbolic Number[J]. Psychological Research, 2017, 81(1):231-242. doi: 10.1007/s00426-015-0734-1
VANBINST K, GHESQUIōRE P, SMEDT B D. Numerical Magnitude Representations and Individual Differences in Children's Arithmetic Strategy Use[J]. Mind, Brain, and Education, 2012, 6(3):129-136. doi: 10.1111/mbe.2012.6.issue-3
LYONS I M, ANSARI D, BEILOCK S L. Qualitatively Different Coding of Symbolic andNonsymbolic Numbers in the Human Brain[J]. Human Brain Mapping, 2014, 36(2):475-488.
LYONS I M, ANSARI D. Foundations of Children's Numerical and Mathematical Skills:The Roles of Symbolic andNonsymbolic Representations of Numerical Magnitude[J]. Advances in Child Development and Behavior, 2015, 48:93-116. doi: 10.1016/bs.acdb.2014.11.003
PETERS L, POLSPOEL B, DE BEECK H O, et al. Brain Activity During Arithmetic in Symbolic and Non-Symbolic Formats in 9 to 12-Year Old Children[J]. Neuropsychologia, 2016, 86:19-28. doi: 10.1016/j.neuropsychologia.2016.04.001
PIAZZA M, PINEL P, BIHAN D L, et al. A Magnitude Code Common to Numerosities and Number Symbols in Human Intraparietal Cortex[J]. Neuron, 2007, 53(2):293-305. doi: 10.1016/j.neuron.2006.11.022
DUAN L, ZHANG Y J, ZHU C Z. Quantitative Comparison of Resting-State Functional Connectivity Derived from fNIRS and fMRI:A Simultaneous Recording Study[J]. Neuroimage, 2012, 60(4):2008-2018. doi: 10.1016/j.neuroimage.2012.02.014
SZVCS D, KILLIKELLY C, CUTINI S. Event-Related Near-Infrared Spectroscopy Detects Conflict in the Motor Cortex in a Stroop Task[J]. Brain Research, 2012, 1477:27-36. doi: 10.1016/j.brainres.2012.08.023
KADOSH R C, KADOSH K C, KAAS A, et al. Notation-Dependent and-Independent Representations of Numbers in the Parietal Lobes[J]. Neuron, 2007, 53(2):307-314. doi: 10.1016/j.neuron.2006.12.025
HOLLOWAY I D, BATTISTA C, VOGEL S E, et al. Semantic and Perceptual Processing of Number Symbols:Evidence from a Cross-Linguistic fMRI Adaptation Study[J]. Journal of Cognitive Neuroscience, 2013, 25(3):388-400. doi: 10.1162/jocn_a_00323
SOLTÉSZ F, SZVCS D. Neural Adaptation to Non-Symbolic Number and Visual Shape:An Electrophysiological Study[J]. Biological Psychology, 2014, 103:203-211. doi: 10.1016/j.biopsycho.2014.09.006
DEHAENE S, MEHLER J. Cross-Linguistic Regularities in the Frequency of Number Words[J]. Cognition, 1992, 43(1):1-29.
JOSEPH T, JOACHIM M, AVISHAI H. Automatic and Intentional Processing of Numerical Information[J]. Journal of Experimental Psychology:Learning Memory and Cognition, 1992, 18(1):166-179. doi: 10.1037/0278-7393.18.1.166
HYDE D C, BOAS D A, BLAIR C, et al. Near-Infrared Spectroscopy Shows Right Parietal Specialization for Number in Pre-Verbal Infants[J]. Neuroimage, 2010, 53(2):647-652. doi: 10.1016/j.neuroimage.2010.06.030
HOSHI Y, KOBAYASHI N, TAMURA M. Interpretation of Near-Infrared Spectroscopy Signals:A Study with a Newly Developed Perfused Rat Brain Model[J]. Journal of Applied Physiology, 2001, 90(5):1657-1662. doi: 10.1152/jappl.2001.90.5.1657
LYONS I M, ANSARI D, BEILOCK S L. Symbolic Estrangement:Evidence Against a Strong Association Between Numerical Symbols and the Quantities They Represent[J]. Journal of Experimental Psychology General, 2012, 141(4):635-641. doi: 10.1037/a0027248
VERGUTS T, FIAS W. Representation of Number in Animals and Humans:A Neural Model[J]. Journal of Cognitive Neuroscience, 2004, 16(9):1493-1504. doi: 10.1162/0898929042568497