VICTOR S. A Computational Introduction to Number Theory and Algebra[M]. Cambridge:Cambridge University Press Cambridge, 2008.
|
BUHLER J, WAGON S. Basic Algorithms in Number Theory[J]. Algorithmic Number Theory, MSRILibrary, 2008:44:25-68.
|
Cohen H. A Course in Computational Algebraic Number Theory[J]. Graduate Texts in Math, 2000, 26(2):211-244.
|
STINSON D R. Cryptography:Theory and Practice[M]. Florida:Chemical Rubber Company Press, 1995.
|
COCKS C. An Identity Based Encryption Scheme Based on Quadratic Residues.[J]. Cryptography and Coding, 2001, 2260:360-363. doi: 10.1007/3-540-45325-3
|
CAO Z F, ZHU H J, LU R X. Provably Secure Robust Threshold Partial Blind Signature[J]. Science in China Series F, 2006, 49(5):604-615.
|
屈晓.基于公钥密码体制的模幂算法执行效率研究[D].天津: 天津大学, 2014.http://cdmd.cnki.com.cn/Article/CDMD-10056-1015019149.htm
|
王金荣, 周赟, 王红霞. Montgomery模平方算法及其应用[J].计算机工程, 2007, 33(24):155-157.
|
KAYA E, ACAR T, KALISK B S. Analyzing and Comparing Montgomery Multiplication Algorithms[J]. IEEE Microwave Magazine, 1996, 16(3):26-33.
|
蒋帅.模逆运算及其时间复杂度分析[D].济南: 山东大学, 2014.http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2598312
|
BLUM L, BLUM M, SHUB M. A Simple Unpredictable Pseudo-Random Number Generator[J]. SIAM Journal on Computing, 1986, 15(2):364-383. doi: 10.1137/0215025
|
BLUM M, GOLDWASSER S. An Efficient Probabilistic Public Key Encryption Scheme Which Hides All Partial Information[J]. Process of Cryptography, 1984:289-302.
|
CHAI Z C, CAO Z F, DONG X L. Identity-Based Signature Scheme Based on Quadratic Residues[J]. Science in China Series F, 2007(3):373-380.
|
费如纯, 王丽娜, 于戈.基于离散对数和二次剩余的门限数字签名体制[J].通信学报, 2002, 23(5):65-69. doi: 10.3321/j.issn:1000-436X.2002.05.012
|
王志伟, 张伟.基于二次剩余的新型盲签名方案[J].计算机工程与科学, 2010, 32(9):18-20. doi: 10.3969/j.issn.1007-130X.2010.09.005
|
邱卫国, 陈克非, 白英彩.新型Rabin签名方案[J].软件学报, 2000, 11(10):1333-1337.
|