李海蓉.美式期权定价的指数型差分格式分析[J].西南师范大学学报(自然科学版), 2014, 39(8):86-89.
|
MERTON R C. Option Pricing When Underlying Stock Return Are Discontinuous[J]. Journal of Financial Economics, 1976, 3(1):125-144.
|
KOU S G. A Jump-Diffusion Model for Option Pricing[J]. Management Science, 2002, 48(8):1086-1101. doi: 10.1287/mnsc.48.8.1086.166
|
D'HALLUIN Y, FORSYTH P A, LABAHN G. A Penalty Method for American Options with Jump Diffusion Processes[J]. NumerischeMathematik, 2004, 97(2):321-352.
|
D'HALLUIN Y, FORSYTH P A, VETZAL K R. Robust Numerical Methods for Contingent Claims under Jump Diffusion Processes[J]. IMA Journal of Numerical Analysis, 2005, 25(1):87-112.
|
TOIVANEN J. Numerical Valuation of European and American Options under Kou's Jump-Diffusion Model[J]. SIAM Journal on Scientific Computing, 2008, 30(4):1949-1970. doi: 10.1137/060674697
|
SALMI S, TOIVANEN J. An Iterative Method for Pricing American Options under Jump-Diffusion Model[J]. Applied Numerical Mathematics, 2011, 61(7):821-831. doi: 10.1016/j.apnum.2011.02.002
|
MOHAN K. KADALBAJOOLOK P T, ALPESH K. Second Order Accurate IMEX Methods for Option Pricing under Merton and Kou Jump-Diffusion Models[J]. Journal of Scientific Computing, 2015, 65(3):979-1024. doi: 10.1007/s10915-015-0001-z
|
ZHANG K, WANG S. Pricing Options under Jump Diffusion Processes with Fitted Finite Volume Method[J]. Applied Mathematics and Computation, 2008, 201(1):398-413.
|
ZHANG K, WANG S. A Computational Scheme for Options under Jump Diffusion Processes[J]. International Journal of Numerical Analysis and Modeling, 2009, 6(1):110-123.
|
ZHANG K, YANG X Q, TEO K L. A Power Penalty Approach to American Option Pricing with Jump Diffusion Processes[J]. Journal of Industrial and Management Optimization, 2008, 4(4):783-799. doi: 10.3934/jimo.2008.4.783
|
张凯.美式期权定价——基于罚方法的金融计算[M].经济科学出版社, 2012.
|
WANG S, ZHANG S H, FANG Z W. A Superconvergent Fitted Finite Volume Method for Black-Scholes Equations Goverging European and American Option Valuation[J]. Numerical Methods for Partial Differential Equations, 2015, 31(4):1190-1208.
|
甘小艇, 殷俊锋.二次有限体积法定价美式期权[J].计算数学, 2015, 37(1):67-82.
|
甘小艇, 殷俊锋, 李蕊.有限体积法定价跳扩散期权模型[J].同济大学学报(自然科学版), 2016, 44(9):1458-1465.
|
GAN X T, YIN J F, GUO Y X. Finite Volume Method for Pricing European and American Options under Jump-Diffusion Models[J]. East Asia Journal on Applied Mathematics, 2017, 7(2):227-247. doi: 10.4208/eajam.260316.061016a
|
LI Y, LIN J, YANG M. Finite Volume Element Methods:An Overview on Recent Developments[J]. International Journal of Numerical Analysis and Modeling, Series B, 2013, 4(1):14-34.
|