唐运林, 顾偌铖, 吴燕燕, 等.入侵重庆地区的草地贪夜蛾种群生物型鉴定[J].西南大学学报(自然科学版), 2019, 41(7):1-7.
|
唐运林, 吴燕燕, 顾偌铖, 等.重庆地区草地贪夜蛾肠道细菌的分离鉴定[J].西南大学学报(自然科学版), 2019, 41(7):8-14.
|
顾偌铖, 唐运林, 吴燕燕, 等.重庆巫山地区采食玉米的草地贪夜蛾肠道细菌的分离鉴定补遗[J].西南大学学报(自然科学版), 2019, 41(8):1-5.
|
顾偌铖, 唐运林, 吴燕燕, 等.重庆地区取食高粱的草地贪夜蛾与玉米粘虫肠道细菌比较[J].西南大学学报(自然科学版), 2019, 41(8):6-13.
|
郭志斌, 蒋睿轩, 唐运林, 等.重庆地区取食高粱的草地贪夜蛾肠道细菌新分离株的鉴定[J].西南大学学报(自然科学版), 2019, 41(9):9-16.
|
相辉, 黄勇平.肠道微生物与昆虫的共生关系[J].昆虫知识, 2008, 45(5):687-693. doi: 10.3969/j.issn.0452-8255.2008.05.003
|
张振宇, 圣平, 黄胜威, 等.昆虫肠道微生物的多样性、功能及应用[J].生物资源, 2017, 39(4):231-239.
|
陈勃生, 鲁兴萌, 邵勇奇.鳞翅目昆虫肠道微生物的多样性及其与宿主的相互作用[J].昆虫学报, 2017, 60(6):710-722.
|
JONES A G, MASON C J, FELTON G W, et al. Host Plant and Population Source Drive Diversity of Microbial Gut Communities in Two Polyphagous Insects[J]. Scientific Reports, 2019, 9(1):2792-1-2791-11. doi: 10.1038/s41598-019-39163-9
|
ACEVEDO F E, PEIFFER M, TAN C W, et al. Fall Armyworm-Associated Gut Bacteria Modulate Plant Defense Responses[J]. Molecular Plant-Microbe Interactions, 2017, 30(2):127-137. doi: 10.1094/MPMI-11-16-0240-R
|
CHEN B S, TEH B S, SUN C, et al. Biodiversity and Activity of the Gut Microbiota across the Life History of the Insect Herbivore Spodoptera littoralis[J]. Nature, 2016, 6:29505-1-29505-14.
|
STAUDACHER H, KALTENPOTH M, BREEUWER J A J, et al. Variability of Bacterial Communities in the Moth Heliothis Virescens Indicates Transient Association with the Host[J]. PLoS One, 2016, 11(5):e0154514-1-e0154514-21.
|
PANIAGUA VOIROL L R, FRAGO E, KALTENPOTH M, et al. Bacterial Symbionts in Lepidoptera:Their Diversity, Transmission, and Impact on the Host[J]. Frontiers in Microbiology, 2018, 9:556-1-556-14. doi: 10.3389/fmicb.2018.00556
|
TAKASHIMA S, YOUNOSSI-HARTENSTEIN A, ORTIZ P A, et al. A Novel Tissue in an Established Model System:The Drosophila Pupal Midgut[J]. Development Genes and Evolution, 2011, 221(2):69-81. doi: 10.1007/s00427-011-0360-x
|
SCHRETTER C E, VIELMETTER J, BARTOS I, et al. A Gut Microbial Factor Modulates Locomotor Behaviour in Drosophila[J]. Nature, 2018, 563(7731):402-406. doi: 10.1038/s41586-018-0634-9
|
CARVALHO R A, OMOTO C, FIELD L M, et al. Investigating the Molecular Mechanisms of Organophosphate and Pyrethroid Resistance in the Fall Armyworm Spodoptera frugiperda[J]. PLoS One, 2013, 8(4):e62268-1-e62268-11.
|
DE ALMEIDA L G, DE MORAES L A B, TRIGO J R, et al. The Gut Microbiota of Insecticide-resistant Insects Houses Insecticide-degrading Bacteria:A Potential Source for Biotechnological Exploitation[J]. PLoS One, 2017, 12(3):e0174754-1-e0174754-19.
|
CABRERA J A, KURTZ A, SIKORA R A, et al. Isolation and Characterization of Fenamiphos Degrading Bacteria[J]. Biodegradation, 2010, 21(6):1017-1027. doi: 10.1007/s10532-010-9362-z
|
MALLICK K, BHARATI K, BANERJI A, et al. Bacterial Degradation of Chlorpyrifos in Pure Cultures and in Soil[J]. Bulletin of Environmental Contamination and Toxicology, 1999, 62(1):48-54.
|
SINGH B K, WALKER A, MORGAN J A W, et al. Biodegradation of Chlorpyrifos by Enterobacter Strain B-14 and Its Use in Bioremediation of Contaminated Soils[J]. Applied and Environmental Microbiology, 2004, 70(8):4855-4863. doi: 10.1128/AEM.70.8.4855-4863.2004
|
KHALID S, HASHMI I, KHAN S J. Bacterial Assisted Degradation of Chlorpyrifos:The Key Role of Environmental Conditions, Trace Metals and Organic Solvents[J]. Journal of Environmental Management, 2016, 168:1-9.
|
MUHAMMAD A, HABINEZA P, JI T L, et al. Intestinal Microbiota Confer Protection by Priming the Immune System of Red Palm Weevil Rhynchophorus ferrugineus Olivier (Coleoptera:Dryophthoridae)[J]. Frontiers in Physiology, 2019, 10:01303-1-01303-13.
|
THAKUR A, DHAMMI P, SAINI H S, et al. Pathogenicity of Bacteria Isolated from Gut of Spodoptera litura (Lepidoptera:Noctuidae) and Fitness Costs of Insect Associated with Consumption of Bacteria[J]. Journal of Invertebrate Pathology, 2015, 127:38-46. doi: 10.1016/j.jip.2015.02.007
|