DOI: 10.13718/j. cnki. xdzk. 2017.05.022

# 多夸克系统中的湮灭相互作用与 新强子态 X(3872)研究<sup>∞</sup>

谭志云1, 杨友昌1,2, 万猛1, 田维钊1

1. 遵义师范学院物理与电子科学学院,贵州遵义 563006;2. 南京大学物理学院,南京 210093

摘要:考虑多夸克系统内部正反夸克对湮灭为有效胶子,推导出了湮灭相互作用势;在不修改夸克模型参数的情况下,研究了 c  $\overline{cuu}$ 系统的能谱,不仅合理地解释了新强子态 X(3872),而且还发现了  $J^{PC} = 2^{++}$  的  $D^{0*}$  弱束缚态,并为 BES 和 LHCb 等国际实验合作组探测该粒子提出了建议.

关 键 词: 手征组分夸克模型; 湮灭相互作用; 多高斯展开算法

**中图分类号: 0572.33** 文献标志码: A 文章编号: 1673-9868(2017)05-0145-05

自 2003 年 Belle 实验合作组发现 X(3872) 以来,北京 BES、欧州 LHCb、日本 Belle、美国 BaBar 等国 际实验合作组还相继发现了 Z<sub>e</sub>(3900)、X(3915)、Y(4260)、Z<sub>e</sub>(4020) 等 22 个奇特介子态存在的信号<sup>[1-2]</sup>. 这些新强子态的性质与夸克-反夸克组成介子的模型研究结果不相吻合.为解释这些新强子态的性质,理论 上提出了分子态、双夸克-反双夸克组态、双夸克与四夸克的混合等不同的内部结构. 然而,到目前为止, 关于新强子态内部结构的讨论仍然激烈,没有定论.

通常情况下,研究新强子态性质的夸克模型包含图 1(a) 所示的单胶子交换相互作用、图 1(b) 所示的 自发对称破缺机制下的赝标介子交换相互作用,以及考虑夸克禁闭的距离线性或平方禁闭势.根据 QCD 理 论,胶子是颜色八重态,因此夸克-反夸克组成的qq色单态介子和 3 个夸克组成的qqq 色单态重子内部不存 在单胶子湮灭相互作用.然而,由q<sub>1</sub>  $\overline{q}_2 q \overline{q}$ 组成的四夸克态、q<sub>1</sub> q<sub>2</sub> q<sub>3</sub> q  $\overline{q}$ 组成的五夸克态等多夸克结构内部间 存在图 1(c) 所示的湮灭相互作用.到目前为止,很少有人考虑这种相互作用对多夸克系统能谱的影响.因 此,本文旨在研究湮灭相互作用对四夸克态能谱的影响.本研究结果表明,考虑湮灭相互作用后,不仅能解 释新强子态 X(3872) 的内部结构,而且还发现存在  $J^{PC} = 2^{++}$ 的  $D^{0*} \overline{D}^{0*}$ 弱束缚态.

#### 1 手征组分夸克模型

考虑图 1(a)、(b) 所示的夸克(反夸克)-夸克(反夸克) 间交换单胶子、单玻色子时, 粒子间的相互作用 通常取为

$$H = \sum_{i=1}^{4} \left( m_i + \frac{\mathbf{p}_i^2}{2m_i} \right) - T_{\text{c.m.}} + \sum_{j>i=1}^{4} \left( V_{ij}^c + V_{ij}^g + V_{ij}^{\chi} + V_{ij}^{\sigma} \right)$$
(1)

式中: T<sub>cm</sub> 是系统的质心能量; V<sup>G</sup><sub>ii</sub> 来源于单胶子交换的结果, 其值为

① 收稿日期: 2016-08-20

通信作者:杨友昌,教授.

基金项目:国家自然科学基金(11265017);贵州省优秀青年科技人才培养对象专项资金(黔科合人字(2013)28,黔科合J字LKZS[2014] 31号,黔科合J字LKZS[2012]05号);贵州省物理学特色重点学科(黔学位合字ZDXK〔2015〕12号,黔教合人才团队字 [2012]08号).

作者简介:谭志云(1979-),女,湖南邵阳人,副教授,主要从事理论物理和课程教学论研究.



图 1 夸克(反夸克)-夸克(反夸克)间相互作用费曼图

$$V_{ij}^{G} = a_{s} \frac{\boldsymbol{\lambda}_{i}^{c} \cdot \boldsymbol{\lambda}_{j}^{c}}{4} \left[ \frac{1}{r_{ij}} - \frac{2\pi}{3m_{i}m_{j}} \boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j} \delta(r_{ij}) \right]$$
(2)

其中: $r_{ij} = |r_i - r_j|$ ;  $\sigma$  和 $\lambda^c$  ( $c = 1, 2, \dots, 8$ ) 分别表示 SU(2) 泡利矩阵和 SU(3) 盖尔曼矩阵, 对于反夸 克 $\lambda^c$  应替换为  $-\lambda^{c*}$ ;通常情况下,  $\delta(r_{ij})$  函数正规化为

$$\delta(r_{ij}) = \frac{1}{4\pi r_{ij} r_0^2(\mu)} e^{-r_{ij}/r_0(\mu)}$$
(3)

其中: $r_0(\mu) = \frac{r_0}{\mu}$ ,  $\mu$  是两夸克(反夸克)的折合质量; 拟合介子谱实验数据确定参数 $r_0$ 的值;  $\alpha_s$  是强耦合系数, 在非相对论夸克模型中, 通常取为

$$\alpha_s = \frac{\alpha_0}{\ln\left[\frac{\mu^2 + \mu_0^2}{\Lambda_0^2}\right]} \tag{4}$$

轻夸克间交换的赝标和标量介子σ相互作用势分别取为

$$V_{ij}^{\pi} = C(g_{ch}, m_{\pi}, \Lambda_{\pi}) \frac{m_{\pi}^{2}}{12m_{i}m_{j}} H(m_{\pi}, \Lambda_{\pi}, r_{ij}) (\boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j}) \sum_{a=1}^{a=3} \boldsymbol{\lambda}_{i}^{a} \cdot \boldsymbol{\lambda}_{j}^{a}$$
(5)

$$V_{ij}^{K} = C(g_{ch}, m_{K}, \Lambda_{K}) \frac{m_{K}^{2}}{12m_{i}m_{j}} H(m_{K}, \Lambda_{K}, r_{ij})(\boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j}) \sum_{a=4}^{a=7} \boldsymbol{\lambda}_{i}^{a} \cdot \boldsymbol{\lambda}_{j}^{a}$$
(6)

$$V_{ij}^{\eta} = C(g_{ch}, m_{\eta}, \Lambda_{\eta}) \frac{m_{\eta}^{2}}{12m_{i}m_{j}} H(m_{\eta}, \Lambda_{\eta}, r_{ij})(\boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j}) \left[\cos\theta_{\rho}(\boldsymbol{\lambda}_{i}^{8} \cdot \boldsymbol{\lambda}_{j}^{8}) - \frac{2}{3}\sin\theta_{\rho}(\boldsymbol{\lambda}_{i}^{0} \cdot \boldsymbol{\lambda}_{j}^{0})\right]$$
(7)

$$V_{ij}^{\sigma} = -\frac{g_{ch}^2}{4\pi} \frac{\Lambda_{\sigma}^2}{\Lambda_{\sigma}^2 - m_{\sigma}^2} m_{\sigma} \bigg[ Y(m_{\sigma} r_{ij}) - \frac{\Lambda_{\sigma}}{m_{\sigma}} Y(\Lambda_{\sigma} r_{ij}) \bigg]$$
(8)

$$H(m, \Lambda, r) = \left[Y(mr) - \frac{\Lambda^3}{m^3}Y(\Lambda r)\right]$$
(9)

$$C(g_{\rm ch}, m, \Lambda) = \frac{g_{\rm ch}^2}{4\pi} \frac{\Lambda^2}{\Lambda^2 - m^2} m$$
(10)

式中:  $Y(x) = e^x / x$  是标准的 Yukawa 函数; 而手征耦合常数  $g_{ch}$  可通过  $\pi NN$  耦合的实验值定出.

在自然界中,只有色单态强子存在,而湮灭为一个胶子后,胶子是颜色八重态,因此,qq(q = u, d, s,…)组成的两夸克介子内不存在湮灭相互作用.但是,由q<sub>1</sub>q<sub>2</sub>qq组成的四夸克态内部的qq间允许存在 湮灭相互作用,Mandula 在《The Gluon Propagator》中指出,在多夸克系统内部,真正的物理过程应该是 夸克-反夸克湮灭为一个质量  $m_g$ 的有效胶子,因此,假设qq湮灭为一个质量为 $m_g$ 的胶子<sup>[3]</sup>,考虑费曼 图 1(c),取非相对论近似后,湮灭相互作用势为

$$V(r_{q\bar{q}}) = \frac{\pi\alpha_{s}}{6(4m_{q}^{2} - m_{g}^{2})} \left(\frac{16}{3} - \boldsymbol{\lambda}_{q}^{c} \cdot \boldsymbol{\lambda}_{\bar{q}}^{c*}\right) \left(\frac{1}{3} + \frac{1}{2}F_{q} \cdot F_{\bar{q}}^{*}\right) (3 + \boldsymbol{\sigma}_{q} \cdot \boldsymbol{\sigma}_{\bar{q}}) \,\delta(r_{q\bar{q}}) \tag{11}$$

式中: $\lambda_{q}$ , $F_{q}$ 分别表示颜色和味空间中的SU(3)矩阵元;圆括号中的第一项表明在 q q 处于色单态时,不存 在湮灭相互作用,圆括号中的第2,3项表明只有自旋、同位旋分别为1时,才存在湮灭相互作用; $\delta(r_{q\bar{q}})$ 取为(3)式;QCD计算结果显示,有效胶子质量的取值范围为:0.6 GeV <  $m_{g}$  < 1.2 GeV<sup>[4]</sup>.

## 2 $D^{0(*)} \overline{D}^{0(*)}$ 波函数构造

 $S - 波 D^{\circ(*)} \overline{D}^{\circ(*)}$  总波函数为

$$|\Psi_{J,J_z}^{I,I_z}\rangle = |C\rangle \otimes |F_{I,I_z}\rangle \otimes |\chi\rangle_S \otimes |\Psi\rangle$$
(12)

式中 $|C\rangle$ , $|F_{I_s}\rangle$ , $|\chi\rangle_s$ , $|\Psi\rangle$ 分别是颜色、味、自旋和空间波函数.

仅考虑  $D^{\circ(*)}$  和 $\overline{D}^{\circ(*)}$  组成的分子态结构,其颜色波函数为

$$| C\rangle = \frac{1}{\sqrt{3}} (r \,\overline{r} + g \,\overline{g} + b \,\overline{b}) \frac{1}{\sqrt{3}} (r \,\overline{r} + g \,\overline{g} + b \,\overline{b}) \tag{13}$$

自旋、味波函数  $|F\rangle \otimes |\chi\rangle_s$  为

$$U^{PC} = 0^{++}: \ [D^{\circ} \ \overline{D}^{\circ}]_{\circ}, \ [D^{\circ *} \ \overline{D}^{\circ *}]_{\circ}$$
(14)

$$J^{PC} = 1^{++} \cdot \frac{1}{\sqrt{2}} \left[ D^{\circ} \ \overline{D}^{\circ *} + D^{\circ *} \ \overline{D}^{\circ} \right]_{1}$$
(15)

$$J^{PC} = 1^{+-} : \frac{1}{\sqrt{2}} \left[ D^{\circ} \ \overline{D}^{\circ *} - D^{\circ *} \ \overline{D}^{\circ} \right]_{1}, \ \left[ D^{\circ *} \ \overline{D}^{\circ *} \right]_{1}$$
(16)

$$J^{PC} = 2^{++} : \ [D^{0*} \ \overline{D}^{0*}]_{2}$$
(17)

(19)

(22)

式中的下标表示自旋角动量.

根据图 2, 定义 Jacobi 坐标为

$$\mathbf{r} = \mathbf{r}_{1} - \mathbf{r}_{3} \qquad \mathbf{\rho} = \mathbf{r}_{2} - \mathbf{r}_{4} \qquad \mathbf{X} = \frac{m_{1}\mathbf{r}_{1} + m_{3}\mathbf{r}_{3}}{m_{1} + m_{3}} - \frac{m_{2}\mathbf{r}_{2} + m_{4}\mathbf{r}_{4}}{m_{2} + m_{4}} \qquad \mathbf{R} = \frac{\sum_{i=1}^{4} m_{i}\mathbf{r}_{i}}{\sum_{i=1}^{4} m_{i}} \qquad (18)$$

则*S*-波*D*<sup>0(\*)</sup>  $\overline{D}^{0(*)}$  的空间波函数  $| \phi \rangle = \varphi_{lm}^{G}(\mathbf{r}) \phi_{LM}^{G}(\mathbf{\rho}) \chi_{\beta\gamma}^{G}(\mathbf{X})$ ,由 多高斯展开算法<sup>[5]</sup>,各相对运动波函数为:

$$\varphi_{lm}^{G}(\mathbf{r}) = \sum_{n=1}^{n_{\max}} c_n N_{nl} r^l \exp(-v_n r^2) Y_{lm}(\overset{\wedge}{r})$$

$$\psi_{LM}^{G}(\boldsymbol{\rho}) = \sum_{N=1}^{N_{max}} c_N N_{NL} \rho^L \exp(-\boldsymbol{\xi}_N \rho^2) Y_{LM}(\stackrel{\wedge}{\rho})$$
(20)

$$\chi^{G}_{\beta\gamma}(\mathbf{X}) = \sum_{a=1}^{n_{max}} c_a N_{a\beta} X^{\beta} \exp(-\omega_a X^2) Y_{\beta\gamma}(\hat{X})$$
(21)

归一化系数 N<sub>nl</sub> 为

$$N_{nl} = \left[\frac{2^{l+2} (2\nu_n)^{l+\frac{3}{2}}}{\sqrt{\pi} (2l+1)!!}\right]^{\frac{1}{2}}$$



 $\frac{4}{3}$ 

图 2 四夸克结构的 Jacobi 坐标

高斯宽度参数取几何级数的形式  $\nu_n = \frac{1}{r_n}$ ,  $r_n = r_1 a^{n-1}$ ,  $a = \left(\frac{r_{n_{\text{max}}}}{r_1}\right)^{\frac{1}{n_{\text{max}}-1}}$ , (20) 和(21) 式中 $\xi_N$ ,  $\omega_a$  取与 $\nu_n$ 相同的形式, 归一化系数  $N_{NL}$ ,  $N_{a\beta}$  与(19) 式有相同的形式.

### 3 数值计算与讨论

首先利用哈密顿量(1)式拟合两夸克态的能谱,定出合理的模型参数,然后利用同样的哈密顿量 和参数,计算四夸克体系  $D^{0(*)} \overline{D}^{0(*)}$ 的能谱,并与相应的阈值作比较,以确定  $D^{0(*)} \overline{D}^{0(*)}$ 是否为真正的束缚态. 根据已有的实验数据表<sup>[6]</sup>提取参数 $m_{\pi}$ =0.7 fm<sup>-1</sup>,  $m_{\eta}$ =2.77 fm<sup>-1</sup>,  $m_{K}$ =2.51 fm<sup>-1</sup>,  $m_{\sigma}$ =3.42 fm<sup>-1</sup>, 其他参数:  $\Lambda_{\pi} = \Lambda_{\sigma} = 4.2$  fm<sup>-1</sup>,  $\Lambda_{\eta} = \Lambda_{K} = 5.2$  fm<sup>-1</sup>,  $r_{0} = 28.17$  MeV fm,  $\mu_{0} = 36.976$  MeV,  $\theta_{p} = -15^{\circ}$ ,  $g_{ch}^{2}/4\pi = 0.54$ ,  $m_{u} = m_{d} = 313$  MeV,  $m_{c} = 1731$  MeV,  $a_{c} = 160$  MeV fm,  $V_{0} = -131.1$  MeV,  $\alpha_{0} = 2.65$ ,  $\Lambda_{0} = 0.075$  fm<sup>-1</sup> 取自文献[5]. 表 1 列出了用这些参数计算出的拟合介子谱.

表1 拟合介子谱

| 介子名称             | π     | ρ(770) | ω(782) | $D^{\scriptscriptstyle 0}$ | <i>D</i> * | $\eta_c(1S)$ | $J/\psi(1S)$ |
|------------------|-------|--------|--------|----------------------------|------------|--------------|--------------|
| ChQM             | 140   | 775.3  | 703.7  | 1 882.2                    | 2 000.1    | 2 995.7      | 3 097.6      |
| Exp.             | 139.5 | 775.4  | 782.6  | 18 64.8                    | 2 007.0    | 2 981.0      | 3 096.9      |
| $\sqrt{[r^2]}fm$ | 0.67  | 0.88   | 0.85   | 0.73                       | 0.79       | 0.56         | 0.62         |

注: ChQM 与 Exp. 分别为计算结果与实验值,  $\sqrt{[r^2]}$  表示均方根半径.

由两个介子( $M_1$ ,  $M_2$ )组成四夸克体系的理论阈值为 $E(M_1M_2) = E_{M_1} + E_{M_2}$ ,其中是夸克-反夸克组成介子的能谱.因此,四夸克系统 $D^{\circ(*)}\overline{D^{\circ(*)}}$ 的理论阈值为,

 $E_{th}(D_{\circ},\overline{D}_{\circ}) = 3764.4 \text{ MeV}; E_{th}(D_{\circ}^{*},\overline{D}_{\circ}) = 3882.3 \text{ MeV}; E_{th}(D_{\circ}^{*},\overline{D}_{\circ}^{*}) = 4000.2 \text{ MeV}$ 通常情况下,用下式来判断某一个四夸克结构是否为束缚态,

$$\Delta E = E_{4q} - E_{th} \tag{23}$$

即,如果 $\Delta E < 0$ ,则该体系为束缚态,否则不是束缚态.

为计算四夸克系统能谱,将总波函数(12)式代入薛定谔方程,并用 Rayleigh-Ritz 变分方法求解

$$(H-E) \mid \Psi_{J,J_z}^{I,I_z} \rangle = 0 \tag{24}$$

在计算中,取高斯个数  $n_{max} = N_{max} = 7$ ,距离 0.1 fm  $< r(或 \rho) < 2.0$  fm;  $\alpha_{max} = 12$ , 0.1 fm < X < 6.0 fm 时得到表 2 所示的收敛结果.

表 2 取不同组分胶子质量时,得到的  $D^{0(*)}$   $\overline{D}^{0(*)}$  能谱和相应的束缚能

| $D^{0(*)} \overline{D}^{0(*)}$ 组态 -                                                                             | $m_g = 0.7 \text{ GeV}$ |                     | $m_g = 0$    | ). 9 GeV            | $m_g = 1.2 \text{ GeV}$ |                     |
|-----------------------------------------------------------------------------------------------------------------|-------------------------|---------------------|--------------|---------------------|-------------------------|---------------------|
|                                                                                                                 | $E/{ m MeV}$            | $\Delta E/{ m MeV}$ | $E/{ m MeV}$ | $\Delta E/{ m MeV}$ | $E/{ m MeV}$            | $\Delta E/{ m MeV}$ |
| $J^{\scriptscriptstyle PC}=0^{++},~D^{\scriptscriptstyle 0}~\overline{D}{\scriptstyle ^{\scriptscriptstyle 0}}$ | 3 686.4                 | -78.0               | 3 764.7      | 0.3                 | 3 765.3                 | 0.9                 |
| $J^{\scriptscriptstyle PC}=1^{++}$ , $D^{\scriptscriptstyle 0}\overline{D}{}^{\scriptscriptstyle 0*}$           | 3 795.1                 | -87.2               | 3 880.8      | -1.5                | 3 883.0                 | 0.7                 |
| $J^{\scriptscriptstyle PC}=1^{+-}$ , $D^{\scriptscriptstyle 0}\overline{D}{}^{\scriptscriptstyle 0*}$           | 3 876.7                 | -5.6                | 3 883.3      | 1.0                 | 3 883.3                 | 1.1                 |
| $J^{\scriptscriptstyle PC}=2^{++}$ , $D^{\scriptscriptstyle 0*}\overline{D}{}^{\scriptscriptstyle 0*}$          | 3 934.2                 | - 66.0              | 3 999.5      | — 0 <b>.</b> 7      | 4 001.0                 | 0.8                 |

到目前为止,QCD 理论和各种模型所计算的有效胶子质量很不确定.为此,在 0.6 GeV <  $m_g$  < 1.2 GeV 范围内,分别取  $m_g$  = 0.7,0.9,1.2 GeV 进行计算,表 2 中列出了  $D^{0(*)} \overline{D}^{0(*)}$  四夸克系统能 谱和相应的束缚能.结果表明,当有效胶子质量取值越小时,湮灭相互作用越强, $D^{0(*)} \overline{D}^{0(*)}$  系统越 容易形成束缚态,且当  $m_g$  = 0.7 GeV 时,出现了结合能约 60 ~ 90 MeV 的紧束态结构,与分子态的 理论研究结果不吻合.德国物理学工作者 DILLIG 和 SCHOTT 取  $m_g$  = 0.9 GeV 研究了标量介子,并 合理地解释了标量介子的性质.另外,格点 QCD 计算出来的胶球质量<sup>[7]</sup> 为(1 611 ± 30 ± 160) MeV, 要求  $2m_g$  > (1 611 ± 30 ± 160) MeV.因此,取  $m_g$  = 0.9 GeV 是比较合理的选择.本研究发现,当  $m_g$  = 0.9 GeV 时,  $J^{PC} = 1^{++}$ ,  $D^0 \overline{D}^{0*}$  的能谱比相应的阈值低1.5 MeV,与新强子态X(3872) 的实验结果吻合得 很好,且与其它理论研究结果相吻合,可以合理地把新强子态X(3872) 解释为  $D^0 \overline{D}^{0*}$  分子态.另外,计算 结果表明还存在  $J^{PC} = 2^{++}$ 的  $D^{0*} \overline{D}^{0*}$  弱束缚态,该束缚态可以在  $J/\Psi\omega$  衰变道中进行实验探测.

#### 4 结 论

考虑有效胶子质量,推导出了 q q 非相对论湮灭相互作用,在 0.6 GeV  $< m_g < 1.2$  GeV 范围内,取中间值  $m_g = 0.9$  GeV 时,可以合理地把 X(3872) 解释为  $J^{PC} = 1^{++}$  的  $D^0 \overline{D}^{0*}$  分子态.同时,还发现了  $J^{PC} = 2^{++}$  的  $D^{0*} \overline{D}^{0*}$  弱束缚态.北京 BES、日本 Belle、美国 BaBar、欧州 LHCb 等实验合作组,可以在 J/ $\psi\omega$  衰变道中探测该粒子.若能在未来实验中探测到该粒子,将进行一步证明该模型的合理性.

#### 参考文献:

- [1] 杨友昌,谭志云,万 猛. XYZ 新强子态的研究进展 [J]. 西南大学学报(自然科学版), 2012, 34(11): 33-36.
- [2] CHEN Hua-xing, CHENC Wei, LIU Xiang, et al. The Hidden-Charm Pentaquark and Tetraquark States [J]. Physics Reports, 2016, 639: 1-121.
- [3] MANDULA J E. The Gluon Propagator [J]. Physics Reports, 1999, 315: 273-284.
- [4] GIACOSA F, GUTSCHE T, FAESSLER A. Covariant Constituent Quark-Gloun Mode for the Glueball-Quarkonia Content of Scalar-Isoscalar Mesons [J]. Phys Rev C, 2005, 71(2): 025202-1-025202-14.
- [5] 潘正坤,高钦翔,杨友昌,等.四夸克系统的分子态结构研究 [J].西南大学学报(自然科学版),2010,32(5):42-45.
- [6] OLIVE K A, AGASHE K, AMSLER C, et al. Particle Data Group [J]. Chinese Physics C, 2014, 38(9): 090001-1-090001-10.
- [7] MICHAEL C. Exotics [J]. Int Rev Nucl Phys, 2004(9): 103-126.

# Study on Annihilation Interaction in Multi-Quark Systems and the New Hadron State X(3872)

TAN Zhi-yun<sup>1</sup>, YANG You-chang<sup>1,2</sup>, WAN Meng<sup>1</sup>, TIAN Wei-zhao<sup>1</sup>

1. School of Physics and Electrical Science, Zunyi Normal College, Zunyi Guizhou 563006, China;

2. School of Physics, Nanjing University, Nanjing 210093, China

Abstract: Taking into account an effective one-gluon exchange between quark-antiquark, the authors deduced the annihilation interaction potential. The spectra of the c  $\overline{c}u \overline{u}$  system were calculated within a chiral constituent quark model with the same parameters as used in other works. In this work, the new hadron state X(3872) was convincingly explained, and a weak bound state  $D^{0*} \overline{D}^{0*}$  with quantum number  $J^{PC} =$  $2^{++}$  was discovered. Some proposals are offered in this paper to such international organizations for experiment collaboration as BES and LHCb for the exploration of this particle.

Key words: the chiral constituent quark model; annihilation interaction; multi-Gaussian expansion method

责任编辑 潘春燕