Iun. 2017

DOI: 10. 13718/j. cnki. xdzk. 2017. 06. 009

同阶子群个数之集为 $\{1,3,4\}$ 的有限群 $^{\circ}$

李春艳, 陈贵云

西南大学 数学与统计学院, 重庆 400715

摘要:设G是一个有限群.n(G)表示群G中所有同阶子群的个数组成的集合.得出了当 $n(G) = \{1,3,4\}$ 时G的 所有 Sylow 子群的结构.

关键词:有限群;同阶子群的个数;Sylow子群;群结构

中图分类号: 0152.1

文献标志码: A 文章编号: 1673 - 9868(2017)06 - 0054 - 06

有限群G 的结构一直是群论研究中一个最基本的课题,本文关注同阶子群的个数与群结构的关系,设 群 G 是一个有限群, n(G) 表示 G 中所有同阶子群的个数组成的集合. 当 $n(G) = \{1, m\}$ 时, 关于群 G 的结 构的研究已经有不少重要的结果,如文献[1]得到了满足 $n(G) = \{1, p+1\}(p$ 是素数)的非幂零群的结构, 并且得到了当 m = p + 1 或 $m = p^2 + p + 1$ (p 是素数) 时的幂零群的结构; 文献[2] 给出了 $n(G) = \{1, m\}$ 时的非幂零群的结构. 这些结果都限于讨论 n(G) 包含 2 个元素的情形, 对于更大的集合, 并未出现相关结 果. 结合文献[1-3]的思想和方法,本文将讨论 $n(G) = \{1,3,4\}$ 时群G的结构. 当然,这样的群是存在的. 如 A_4 是我们非常熟悉的一个群,它的所有子群包括: $1 \land$ 单位元群, $3 \land 2 \land$ 阶群, $4 \land 3 \land$ 阶群, $1 \land 4 \land$ 阶群和 A_4 本身,满足 $n(A_4) = \{1,3,4\}$. 另外,易知满足 $n(G) = \{1,2,3\}$ 的群是不存在的. 因此,研究满足 $n(G) = \{1,2,3\}$ $\{1, 3, 4\}$ 的群 G 的结构有着特别的意义.

本文将证明如下定理:

定理 1 设 G 为有限群,且 $|G| = 2^a 3^\beta q_1^{a_1} q_2^{a_2} \cdots q_n^{a_n}$,其中 q_i 为大于 3 的素数, α, β 为非负整数, α_i , n均为正整数, 如果 $n(G) = \{1, 3, 4\}$, 则 G 的 Svlow 子群具有如下性质:

(a) 若 $\alpha \neq 0$,则 G 的 Sylow 2 -子群 P_2 有如下性质:

当 P_2 循环时, G 的 Sylow 2 -子群只有 1 个或 3 个;

当 P_2 不循环时, P_2 $\triangleleft G$ 且具有如下结构:

如果 $\alpha = 2$,则 $P_2 = C_2 \times C_2$;

如果 $\alpha = 3$,则 $P_2 = C_4 \times C_2$ 或 $P_2 = \langle a, b \mid a^4 = 1, b^2 = a^2, b^{-1}ab = a^{-1} \rangle$;

如果 $\alpha \geqslant 4$,则 $P_2 = C_{2a-1} \times C_2$ 或 $P_2 = \langle a, b \mid a^{2^{a-1}} = b^2 = 1, b^{-1}ab = a^{1+2^{a-2}} \rangle$.

(b) 若 $\beta \neq 0$, 则 G 的 Sylow 3 -子群 P_3 有如下性质:

当 P_3 循环时, G 的 Sylow 3 -子群只有 1 个或 4 个;

当 P_3 不循环时, P_3 $\triangleleft G$ 且具有如下结构:

作者简介:李春艳(1991-),女,四川绵阳人,硕士研究生,主要从事群论的研究.

① 收稿日期: 2016-04-29

基金项目: 国家自然科学基金项目(11271301, 11471266).

$$P_3 = C_{2\beta-1} \times C_3$$

或

$$P_3 = \langle a, b \mid a^{3^{\beta-1}} = b^3 = 1, b^{-1}ab = a^{1+3^{\beta-2}} \rangle$$

(c) G 的 Sylow q_i -子群 Q_i 循环且 $Q_i \triangleleft G$ $(i = 1, 2, \dots, n)$.

为证明定理1, 先引入下面几个引理:

引理 $\mathbf{1}^{[4]^{\hat{r}2}21.7.2}$ 设 p 是素数, 令 $|G|=p^a \cdot n$, $N(p^a)$ 是 $G + p^a$ 阶子群的个数,则

$$N(p^a) \equiv 1 \pmod{p}$$

引理 $2^{[4]^{\hat{c}\#5.2.7}}$ 设 P 是一个 p -群,则:

- (a) $P/\Phi(P)$ 是初等交换群;
- (b) 如果 $|P/\Phi(P)| = p^n$, 那么存在 $x_1, x_2, \dots, x_n \in P$, 使得 $P = \langle x_1, x_2, \dots, x_n \rangle$.

下面 3 个引理是关于具有循环极大子群的有限 p -群的结构定理:

引理 $3^{[5]$ 定理5.3.6 设 P 是有一个循环极大子群 H 的非交换 ρ -群, 假设

$$1 \neq x^p \in H \qquad \forall x \in P \backslash H$$

则 p = 2,且

$$P = \langle a^{2^{n-1}} = 1, b^2 = a^{2^{n-2}}, b^{-1}ab = a^{-1} \rangle$$
 $n \geqslant 3$

为一个广义四元数群.

引理 $\mathbf{4}^{[5]^{\hat{\mathbb{E}}\mathbb{E}5.3.2}}$ 设 P 是一个非交换 p -群, $H=\langle h \rangle$ 是 P 的循环极大子群,且 $|H|=p^n$. 假设 H 在 P 中有补 $A=\langle a \rangle$,那么下面情形之一成立:

- (a) $p \neq 2$ 且 $h^a = h^{1+p^{n-1}}$ (选择适当的 $a \in A$);
- (b) $p = 2 \coprod h^a = h^{-1}$;
- (b) p = 2, $n \ge 3 \text{ H}$ $h^a = h^{-1+2^{n-1}}$;
- (b) p = 2, $n \geqslant 3 \perp h^a = h^{1+2^{n-1}}$.

引理 6 设 P 是满足引理 4 条件的一个非交换 p -群, $|P| = p^{n+1}$, 则其 p 阶子群的个数有如下结果:

- (a) 当 p = 2 且 $P = \langle a, b \mid a^{2^n} = b^2 = 1, b^{-1}ab = a^{-1} \rangle$ 时,其 2 阶子群有 $2^n + 1$ 个;
- (b) 当 p = 2, $n \ge 3$ 目 $P = \langle a, b \mid a^{2^n} = b^2 = 1$, $b^{-1}ab = a^{-1+2^{n-1}} \rangle$ 时, 其 2 阶子群有 $2^{n-1} + 1$ 个:
- (c) 当 p=2, $n\geqslant 3$ 且 $P=\langle a,b\mid a^{2^n}=b^2=1,\,b^{-1}ab=a^{1+2^{n-1}}\rangle$ 时, 其 2 阶子群有 3 个;
- (d) 当 p=3 且 $P=\langle a,b \mid a^{3^n}=b^3=1,b^{-1}ab=a^{1+3^{n-1}}\rangle$ 时,其 3 阶子群有 4 个.

证 (a) 当

$$P = \langle a, b \mid a^{2^n} = b^2 = 1, b^{-1}ab = a^{-1} \rangle$$

时,因为 $b^{-1}ab = a^{-1}$,故对于任给的 $g \in P$,存在非负整数 i,j,使得 $g = a^ib^j$,于是 P 中的所有 2 阶子群分别为 $\langle a^{2^{n-1}} \rangle$, $\langle b \rangle$, $\langle ab \rangle$, $\langle a^2b \rangle$,…, $\langle a^{2^{n-1}}b \rangle$,共 2^n+1 个,引理 6 的(a) 得证.

(b) 当

$$P = \langle a, b \mid a^{2^n} = b^2 = 1, b^{-1}ab = a^{-1+2^{n-1}} \rangle$$

时,因为 $b^{-1}ab = a^{-1+2^{n-1}}$,故对任给的 $g \in P$,存在非负整数 i,j,使得 $g = a^ib^j$,于是 P 中的所有 2 阶子群分别为 $\langle a^{2^{n-1}} \rangle$, $\langle b \rangle$, $\langle a^2b \rangle$, $\langle a^4b \rangle$,…, $\langle a^{2^{n-2}}b \rangle$,共 $2^{n-1}+1$ 个,引理 6 的(b) 得证.

(c) 当

$$P = \langle a, b \mid a^{2^n} = b^2 = 1, b^{-1}ab = a^{1+2^{n-1}} \rangle$$

时,因为 $b^{-1}ab = a^{1+2^{n-1}}$,故对任给的 $g \in P$,存在非负整数 i,j,使得 $g = a^{i}b^{j}$,又因为 $b^{2} = 1$,故不妨取 j = 0 或 j = 1. 当 j = 0 时,若 $g^{2} = 1$,则 i = 0 或 $i = 2^{n-1}$,即 g = e 或 $g = a^{2^{n-1}}$;当 j = 1 时,若 $g^{2} = 1$,则

$$g^{2} = (a^{i}b)^{2} = a^{i}ba^{i}b = a^{i}b^{-1}a^{i}b = a^{i}a^{i}a^{i \cdot 2^{n-1}} = a^{2i+i \cdot 2^{n-1}} = 1$$

即有 i = 0 或 $i = 2^{n-1}$, 即 g = b 或 $g = a^{2^{n-1}}b$, 故 P 中的 2 阶子群为 $\langle a^{2^{n-1}} \rangle$, $\langle b \rangle$ 和 $\langle a^{2^{n-1}}b \rangle$, 共 3 个,引理 6 的(c) 得证.

(d) 当

$$P = \langle a, b \mid a^{3^n} = b^3 = 1, b^{-1}ab = a^{1+3^{n-1}} \rangle$$

$$P = \langle a, b \mid a^3 = b^3 = 1, b^{-1}ab = a \rangle$$

此时 P 的所有 3 阶子群为 $\langle a \rangle$, $\langle b \rangle$, $\langle ab \rangle$ 和 $\langle a^2b \rangle$, 共 4 个;

若 $n \ge 2$,因为 $b^{-1}ab = a^{1+3^{n-1}}$,故对任给的 $g \in P$,存在非负整数 i,j,使得 $g = a^ib^j$,其中 j = 0,1,2. 当 j = 0 时, $g^3 = 1$ 的充要条件是 $3^{n-1} \mid 3i$,即 $i = 3^{n-1}k$ (k = 0,1,2);

当j=1时, $g^3=1$ 的充要条件是

$$g^{3} = (a^{i}b)^{3} = a^{i}ba^{i}ba^{i}b = b \cdot b^{-1}a^{i}ba^{i}ba^{i}b = ba^{i}a^{i \cdot 3^{n-1}}a^{i}ba^{i}b = a^{3i} = 1$$

故 $i = 3^{n-1}k$ (k = 1, 2, 3), 即 g = b, $g = a^{3^{n-1}}b$ 或 $g = a^{2 \cdot 3^{n-1}}b$;

当 j = 2 时,若 $g^3 = 1$,则有

$$g^3 = (a^ib^2)^3 = a^ib^2a^ib^2a^ib^2 = b \cdot b^{-1}a^ib^2a^ib^2a^ib^2 = \dots = a^{3i} = 1$$

同理得 $g = b^2$, $g = a^{3^{n-1}}b$ 或 $g = a^{2 \cdot 3^{n-1}}b$.

因此,P有8个3阶元,进而P有4个3阶子群,它们是 $\langle a^{3^{n-1}} \rangle$, $\langle b \rangle$, $\langle a^{3^{n-1}} b \rangle$ 和 $\langle a^{3^{n-1}} b^2 \rangle$,引理6的(d)得证.

引理 $7^{[6]^{[c]23.8.2}}$ 设 $|G| = p^n$. 若 G 只有一个 p 阶子群,则:

- (a) 当 p > 2 时, G 循环;
- (b) 当 p=2 时, G 循环或为广义四元数群.

引理 $8^{\lceil 5 \rceil \pi 2 g_3.8.3}$ 设 $\mid G \mid = p^n$, 对某个 m, 1 < m < n, 有 $N_{pm}(G) = 1$, 则 G 循环.

定理1的证明

我们分3步证明定理1:

步骤 1 G 的 Sylow 2 -子群 P_2 的结构.

当 P_2 循环时, P_2 的各阶子群只有 1 个,因而 G 的 Sylow 2 一子群可能有 1 个,也可能有 3 个. 下面总假设 P_2 不循环.

首先断言 $P_2 \triangleleft G$. 若 $P_2 \triangleleft G$,则因为 $P_2/\Phi(P_2)$ 含有(2,2) -型的初等 Abel 群,即 P_2 含有至少 3 个极大子群. 由于 $n(G) = \{1,3,4\}$,由引理 1 知 P_2 恰有 3 个极大子群. 而此时 G 的 Sylow 2 -子群至少有 3 个,于是这些 Sylow 2 -子群至少含有 4 个不同的同阶极大子群. 再由引理 1 知这种子群至少有 5 个,矛盾. 故 $P_2 \triangleleft G$.

现在考虑 P_2 的 2 阶子群的个数. 若 P_2 只有 1 个 2 阶子群,则 P_2 为循环群或广义四元数群.

若 P_2 为广义四元数群,即

$$P_2 = \langle a^{2^{n-1}} = 1, b^2 = a^{2^{n-2}}, b^{-1}ab = a^{-1} \rangle$$
 $n \geqslant 3$

当 n=3 时, P_2 恰含有 1 个 2 阶子群及 $\langle a \rangle$, $\langle b \rangle$, $\langle ab \rangle$ 共 3 个 4 阶子群, 1 个 8 阶子群, 满足条件;

当 n > 3 时, P_2 至少含有〈 $a^{2^{n-3}}$ 〉,〈b〉,〈ab〉,〈 a^3b 〉,〈 a^5b 〉共 5 个 4 阶子群,矛盾.

故当 P_2 恰有 1 个 2 阶元时, P_2 只能是四元数群.

若 P_2 有至少 2 个 2 阶子群,因为 $Z(P_2)$ 含有 1 个 2 阶子群,所以 P_2 含有 (2, 2) -型 A bel 子群 H. 由 $n(G) = \{1, 3, 4\}$ 及引理 1 知, P_2 的 2 阶子群恰有 3 个,且全部含于 H.

如果 $P_2 = H$,则 P_2 为(2,2)-型群,结论已经成立.

如果 $H \subsetneq P_2$,则存在 $H_1 \leqslant G$, $H \subsetneq H_1$, $|H_1| = 8$. 分两种情形讨论:

情形 1 若 H_1 非交换,由于 H_1 含有不止 1 个 2 阶子群,因此

$$H_1 = \langle a, b \mid a^4 = b^2 = 1, b^{-1}ab = a^{-1} \rangle$$

由引理 6 知 H_1 有 5 个 2 阶子群: $\langle a^2 \rangle$, $\langle b \rangle$, $\langle ab \rangle$, $\langle a^2 b \rangle$, $\langle a^3 b \rangle$, 矛盾.

情形 2 若 H_1 交换,则 $H_1 = C_4 \times C_2$,显然 H_1 满足要求.

到此为止,我们知道:如果 P_2 为 8 阶群,则 P_2 为 8 阶二面体群、四元数群或者 $C_4 \times C_2$.如果 $|P_2| > 8$,则由上面的计算知道, P_2 中的 8 阶子群只能是二面体群、四元数群或者 $C_4 \times C_2$.

若 H_1 为四元数群,且 $P_2 > H_1$,考虑 H_2 ,使得

$$H_1 \subsetneq H_2 \leqslant P_2 \qquad |H_2| = 2^4$$

任取 $x \in H_2 \setminus H_1$. 若 |x| = 2,如果 H_1 中有 4 阶元 d 与x 可换,则因 H_1 中已含有 3 个 4 阶子群,而〈xd〉 也是 4 阶子群,于是 H_2 的 4 阶子群的个数至少为 4. 于是由引理 1 知这类子群个数至少为 5,矛盾. 如果 H_1 中的 4 阶元 d 都不能与x 可换,则 x 在 H_1 中的共轭类长度至少为 6,进而 H_2 至少有 7 个 2 阶子群,矛盾. 若 |x| = 4,则〈x〉为 H_1 之外的一个 4 阶子群,同样得到 H_2 的 4 阶子群的个数至少为 4,依然得到矛盾. 因此,任取 $x \in H_2 \setminus H_1$,有 |x| = 8.

若 H_1 为二面体群或者 $C_4 \times C_2$,则因 H_1 中已含有 3 个 2 阶子群和 3 个 4 阶子群,同理得 H_2 的 2 阶子群或 4 阶子群的个数至少为 4. 于是由引理 1 知这类子群个数至少为 5,矛盾. 因此,任取 $x \in H_2 \setminus H_1$,有 |x|=8,即 H_2 含有循环极大子群. 又分为以下两种子情形讨论:

情形 2.1 若 H₂ 为非交换群,则由引理 3 及引理 4 知, H₂ 为下列 4 种群之一:

- (i) H_2 是一个广义四元数群,由前面的讨论知,该群不符合要求;
- (ii) $H_2 = \langle a, b \mid a^{2^3} = b^2 = 1, b^{-1}ab = a^{-1} \rangle$, 由引理 6 知, H_2 有: $\langle a^4 \rangle$, $\langle b \rangle$, $\langle ab \rangle$, $\langle a^2 b \rangle$, …, 及 $\langle a^7 b \rangle$ 共 9 个 2 阶子群, 矛盾;
- (iii) $H_2 = \langle a, b \mid a^{2^3} = b^2 = 1, b^{-1}ab = a^3 \rangle$, 由引理 6 知, H_2 有: $\langle a^4 \rangle$, $\langle b \rangle$, $\langle a^2 b \rangle$, $\langle a^4 b \rangle$ 及 $\langle a^6 b \rangle$ 共 5 个 2 阶子群,矛盾;
- (iv) $H_2 = \langle a, b \mid a^{2^3} = b^2 = 1, b^{-1}ab = a^5 \rangle$, 此时 H_2 恰有 3 个 2 阶子群: $\langle a^4 \rangle$, $\langle b \rangle$, $\langle a^4 b \rangle$, 3 个 4 阶子群: $\langle a^2 \rangle$, $\langle a^2 b \rangle$, $\langle a^6 b \rangle$, 3 个 8 阶子群: $\langle a \rangle$, $\langle ab \rangle$, $\langle a^3 b \rangle$, 因此 H_2 符合要求.
- 情形 2. 2 若 H_2 交换,则由引理 5 知, $H_2 = C_8 \times C_2$. 经验证, H_2 满足条件. 若 $P_2 = H_2$,则已得结论. 否则再取 $H_3 \leq G$,满足 $|H_3| = 2^5$, $H_2 \subseteq H_3$. 若 H_3 非交换,则 H_3 为前面 (V) 所讨论的群,若 H_3 交换,则 $H_3 = C_{16} \times C_2$,经验证, H_3 也满足条件.

综上所述, 当 P_2 为 16 阶群时, 只能是 $C_8 \times C_2$ 或者 $\langle a, b \mid a^{2^3} = b^2 = 1, b^{-1}ab = a^5 \rangle$.

如果 $|P_{\circ}| > 16$,逐次增大 H_{\circ} 的阶($i = 4,5,\cdots$),重复上述过程和步骤最终可得

$$P_2 = C_{2^{\alpha-1}} \times C_2$$

或

$$P_2 = \langle a, b \mid a^{2^{a-1}} = b^2 = 1, b^{-1}ab = a^{1+2^{a-2}} \rangle$$
 $\alpha \geqslant 4$

定理的 1(a) 成立.

步骤 2 G 的 Sylow 3 -子群 P_3 的结构.

若 P_3 为循环群,则 P_3 的各阶子群只有 1 个,因而 G 的 Sylow 3 -子群可能为 1 个或 4 个. 下设 P_3 不为循环群.

首先证明 $P_3 \triangleleft G$. 假设不成立,则因为 P_3 不循环,故 $P_3/\Phi(P_3)$ 含有(3,3) -型初等 A b e l 群,故 P_3 含有至少 4 个极大子群. 由 $n(G) = \{1,3,4\}$ 和引理 1 知, P_3 恰有 4 个极大子群. 而此时 G 的 Sylow 3 -子群至少有 4 个,于是所有 Sylow 3 -子群至少有 5 个不同的极大子群,矛盾,故 $P_3 \triangleleft G$.

现在考虑 P_3 的 3 阶子群的个数. 若 P_3 只有 1 个 3 阶子群,由引理 4 知, P_3 循环.

若 P_3 含有至少 2 个不同的 3 阶子群,则因为 $Z(P_3)$ 含有 1 个 3 阶子群,所以 P_3 含有(3,3) -型初等 Abel 子群 R. 由 $n(G) = \{1,3,4\}$ 和引理 1 知, P_3 的 3 阶子群恰有 4 个,且全部含于 R 中.

如果 $P_3 = R$,则 P_3 为(3,3) -型初等 Abel 群, $P_3 = C_3 \times C_3$.

如果 $R \subsetneq P_3$,则存在 $R_1 \leqslant G$,使得 $R \subsetneq R_1$,且 $|R_1| = 3^3$.分两种情形讨论:

情形 1 若 R_1 非交换,则

$$R_1 = \langle a, b \mid a^9 = b^3 = 1, b^{-1}ab = a^4 \rangle$$

此时 R_1 中的 3 阶子群有: $\langle a^3 \rangle$, $\langle b \rangle$, $\langle a^3 b \rangle$ 和 $\langle a^3 b^2 \rangle$, R_1 中的 9 阶子群有: $\langle a \rangle$, $\langle ab \rangle$, $\langle ab^2 \rangle$ 和 $\langle a^3 \rangle \times \langle b \rangle$,满足条件.若 $R_1 = P_3$,则已得结论.否则存在 $R_2 \leq G$,满足 $R_1 \subsetneq R_2$, $|R_2| = 3^4$.任取 $y \in R_2 \backslash R_1$,则 $|y| \mid 3^3$.若 |y| = 3 或 |y| = 9,则因 R_1 中已含有 4 个 3 阶或 9 阶子群,故 R_2 中 3 阶或 9 阶子群的 个数将大于 4,矛盾.故 $|y| = 3^3$,则 R_2 含有 1 个循环极大子群,由引理 3 及引理 4 知

$$R_2 = \langle a, b \mid a^{3^3} = b^3 = 1, b^{-1}ab = a^{10} \rangle$$

此时 R_2 的 3 阶子群有: $\langle a^9 \rangle$, $\langle b \rangle$, $\langle a^9 b \rangle$ 和 $\langle a^{18} b \rangle$, 9 阶子群有: $\langle a^3 \rangle$, $\langle a^9 \rangle \times \langle b \rangle$, $\langle a^3 b \rangle$, $\langle a^6 b \rangle$, 27 阶子群有: $\langle a \rangle$, $\langle a^3 \rangle \times \langle b \rangle$, $\langle ab \rangle$ 和 $\langle a^2 b \rangle$,满足条件.

情形 2 若 R_1 交换,则 $R_1 = C_{32} \times C_3$,如果 $R_1 = P_3$,则结论成立. 否则考虑 $R_2 \leq G$,满足:

$$R_1 \subsetneq R_2 \qquad |R_2| = 3^4$$

任取 $z \in R_2 \setminus R_1$,若 |z|=3 或 |z|=9,则因 R_1 中已含有 4 个 3 阶或 9 阶子群,故 R_2 中 3 阶或 9 阶子群的个数将大于 4,矛盾. 故 $|z|=3^3$,则 R_2 含有一个循环极大子群. 分以下两种子情形讨论:

情形 2.1 若 R_2 非交换,则由引理 3 及引理 4 知

$$R_2 = \langle a, b \mid a^{3^3} = b^3 = 1, b^{-1}ab = a^{1+3^2} \rangle$$

归为情形 1 的讨论, R_2 满足要求.

情形 2.2 若 R₂ 交换,则由引理 5 知

$$R_2 = C_{33} \times C_3$$

经验证, R_2 也满足条件. 若 $R_2 = P_3$, 则已得结论, 否则取 $R_3 \leq G$, 满足:

$$R_{2} \subseteq R_{3} \qquad |R_{3}| = 3^{5}$$

则

$$R_3 = C_{34} \times C_3$$

或

$$R_3 = \langle a, b \mid a^{3^4} = b^3 = 1, b^{-1}ab = a^{1+3^3} \rangle$$

综上所述,如果 P_3 为 3^4 阶群,我们得到 P_3 等于上述满足要求的 R_2 .如果 P_3 的阶大于 3^4 ,继续考虑 $R_3 \leq G$,满足 $R_2 \subseteq R_3$ 且 $|R_3| = 3^5$. 重复上述过程,得到

$$R_3 = \langle a, b \mid a^{3^4} = b^3 = 1, b^{-1}ab = a^{1+3^3} \rangle$$

或

$$R_3 = C_{3^3} \times C_3$$

继续上述过程,逐次增大 R_i 的阶 $(i=4,5,\cdots)$,重复上述步骤,最终可得符合要求的 P_3 只有以下两种:

- (i) 当 P_3 循环时, G 的 Sylow 3 -子群只有 1 个或 4 个;
- (ii) 当 P_3 不循环时, $P_3 \triangleleft G$ 且

$$P_3 = C_{3^{\beta-1}} \times C_3$$

或

$$P_3 = \langle a, b \mid a^{3^{\beta-1}} = b^3 = 1, b^{-1}ab = a^{1+3^{\beta-2}} \rangle$$

定理1的(b)成立.

步骤 3 G 的 Sylow q -子群 Q 的结构, 其中 $q \in \pi(G)$, $q \neq 2,3$.

由 Sylow 定理知, $V_q(G) \equiv 1 \pmod{q}$, 且

$$V_q(G) \in n(G) = \{1, 3, 4\}$$
 $q \neq 2, 3$

故 $V_q(G)=1$,即 $Q \unlhd G$. 若 Q 非循环,则由引理 2 知 $Q/\Phi(Q)$ 含有 (q,q) -型初等交换子群 K,则 K 的极大子群的个数为

$$\frac{q^2 - 1}{q - 1} = q + 1 > 4$$

与 $n(G) = \{1, 3, 4\}$ 矛盾. 进而 Q 循环, 定理 1 的(c) 成立.

参考文献:

- [1] CHEN Y H, CHEN G Y. Finite Groups with the Set of the Number of Subgroups of Possible Order Containing Exactly Two Elements [J]. Indian Acad Sci (Math Sci), 2013, 123: 491-498.
- [2] SHAO C G, JIANG Q H. Finite Groups Whose Set of Numbers of Subgroups of Possible Order Has Exactly 2 Elements [J]. Czech Math J, 2014, 139(64): 827-831.
- [3] ZHANG J R. Sylow Numbers of Finite Groups [J]. Algebra, 1995, 176: 111-123.
- [4] HUPPERT B. 有限群论 [M]. 姜 豪, 俞曙霞, 译. 福州: 福建人民出版社, 1992.
- [5] KURZWEIL H, STELLMACHER B. 有限群论导引 [M]. 施武杰,李世恒,译. 北京: 科学出版社, 2009.
- [6] 徐明耀, 曲海鹏. 有限 p-群 [M]. 北京: 北京大学出版社, 2010.

Finite Groups Whose Set of Numbers of Subgroups of Possible Order is $\{1, 3, 4\}$

LI Chun-yan, CHEN Gui-yun

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

Abstract: Let G be a finite group, and n(G) the set of the numbers of subgroups of possible order of G. In this paper we get the detailed structure of the Sylow subgroups of G satisfying that $n(G) = \{1, 3, 4\}$.

Key words: finite group; the number of subgroups of possible order; Sylow subgroup; the structure of a finite group