Ian. 2022

2022年1月

DOI: 10. 13718/j. cnki. xdzk. 2022. 01. 009

二维非稳态对流扩散方程的高阶紧致差分格式

魏剑英, 王燕, 葛永斌

宁夏大学 数学统计学院,银川 750021

摘要:针对二维非稳态变系数对流扩散方程,对时间的离散分别采用二阶和三阶向后差分公式,对空间的离散分别采 用四阶紧致差分和六阶紧致差分方法,提出了两种高精度紧致差分格式,两种格式的截断误差分别为 $O(\tau^2 + h_x^4 + h_y^4)$ 和 $O(\tau^3 + h_x^6 + h_y^6)$,并且均是无条件稳定的,最后给出了数值算例验证了理论结果.

关键 词:对流扩散方程;变系数;高阶紧致差分格式;

全隐格式;无条件稳定

中图分类号: O241.82 文献标志码: A 文章编号: 1673-9868(2022)01-0088-11

开放科学(资源服务)标识码(OSID):

High-Order Compact Schemes for 2D Unsteady Convection Diffusion Equations

WEI Jianying, WANG Yan, GE Yongbin

School of Mathematics and Statistics, Ningxia University, Yinchuan 750021, China

Abstract: In this paper, two high-order compact difference schemes for solving two-dimensional unsteady convection diffusion equations with variable coefficients are proposed, using the second-order and the third-order backward difference formulas for temporal discretization and the fourth-order and the sixth-order compact difference methods for spatial discretization. Both schemes are unconditionally stable and their truncation errors are $O(\tau^2 + h_x^4 + h_y^4)$ and $O(\tau^3 + h_x^6 + h_y^6)$, respectively. The accuracy and stability of the two schemes are verified by some numerical experiments.

Key words: convection diffusion equation; variable coefficient; high-order compact difference scheme; full implicit scheme; unconditionally stable

非稳态对流扩散方程是一类基本的发展方程,在生态环境、流体力学、生物数学等领域都有广泛应用.

收稿日期: 2021-01-12

基金项目:国家自然科学基金项目(11772165,11961054,11902170);宁夏自然科学基金项目(2020AAC03059);宁夏自治区青年拔尖 人才培养工程项目.

作者简介:魏剑英,副教授,主要从事偏微分方程数值解法的研究.

由于解析解通常很难求出,因此,研究各种有效实用的数值方法对此类方程进行求解就显得极为重要.

有关非稳态对流扩散方程的有限差分法的文献报道已有很多,如文献[1]利用半离散法和 Padé 逼近, 推导了一维方程的截断误差为 $O(\tau^5 + h^4)$ 的隐格式,且是无条件稳定的;文献[2]利用 Taylor级数展开和 待定系数法构造了一致四阶紧致格式并结合三阶 TVD-Runge-Kutta方法求解了一维方程;文献[3]针对二 维方程,对空间导数项和时间导数项分别采用四阶离散和加权平均的方法,推导出一种截断误差为 $O(\tau^2 + h^4)$ 的格式;文献[4]采用半离散的方法,从一维定常问题出发,利用四阶紧致差分算子和 Crank-Nicolson(C-N)格式,推导了一种求解二维常系数非稳态对流扩散方程的差分格式,截断误差为 $O(\tau^2 + h^4)$,且是无条件稳定的;文献[5]针对此类方程,构造了有理型紧致交替方向隐式(ADI)格式,截 断误差为 $O(\tau^2 + h^4)$,且是无条件稳定的;文献[6]还提出了该方程无条件稳定的指数型紧致 ADI 差分格 式,其截断误差依然为 $O(\tau^2 + h^4)$;文献[7]利用指数变换消除对流项后转化为扩散方程,再利用紧致公式 和扩展的 Simpson公式构造了一维方程的高阶格式,截断误差为 $O(\tau^4 + h^4)$,且是无条件稳定的;文献[8] 针对二维非稳态常系数方程,空间方向直接采用六阶组合紧致差分公式进行计算,时间方向用 C-N 格式离 散,所提格式的截断误差为 $O(\tau^2 + h^6)$,尽管该格式空间达到了六阶精度,但是由于其时间只有二阶精度, 因此为了保证空间精度达到六阶,其计算所需要采取的时间步长必须为 $O(h^3)$,即必须采用较小的时间步 长,并且该方法仅适用于常系数问题.

本文针对二维非稳态变系数对流扩散方程,首先对空间二阶导数采用一阶导数的四阶逼近公式,而一阶导数采用四阶 Padé 逼近,时间项采用二阶向后差分公式(BDF),得到一个时间二阶、空间四阶精度的紧 致差分格式;然后利用 Taylor 级数展开,对一阶和二阶空间导数项采用六阶紧致差分公式,时间项采用三 阶 BDF 得到一个时间三阶、空间六阶精度的紧致差分格式.由于采用了向后差分,因此两种格式均是无条 件稳定的.

1 差分格式的建立

考虑如下二维非稳态对流扩散方程:

 $u_{t} - \alpha(u_{xx} + u_{yy}) + p(x, y, t)u_{x} + q(x, y, t)u_{y} = f(x, y, t) \qquad (x, y) \in \Omega, \ t \ge 0$ (1) 初始条件:

$$u(x, y, 0) = g(x, y) \qquad (x, y) \in \Omega$$
⁽²⁾

边界条件:

$$u(x, y, t) = s(x, y, t) \qquad (x, y) \in \partial\Omega, t > 0$$
(3)

其中: $\Omega \in [a_1, a_2] \times [b_1, b_2]$ 为 ℝ² 上的矩形区域, $\partial \Omega \to \Omega$ 的边界, u(x, y, t) 为待求未知量, p(x, y, t), q(x, y, t) 分别为 x, y 方向的对流项系数, α 为扩散项系数(常数), f(x, y, t) 为源项, 且 p(x, y, t), q(x, y, t), f(x, y, t), g(x, y), s(x, y, t) 均为已知函数.

为了不失一般性,将计算区域 Ω 进行均匀网格剖分, x 方向剖分为 $a_1 = x_0, x_1, x_2, \dots, x_{N_x} = a_2, y$ 方向剖分为 $b_1 = y_0, y_1, y_2, \dots, y_{N_y} = b_2$,定义空间步长为 $h_x = x_i - x_{i-1}, 1 \le i \le N_x, h_y = y_j - y_{j-1}, 1 \le j \le N_y$,以 τ 表示时间步长, $t_n = n\tau, 0 \le n \le M$. $u_{i,j}^n$ 表示 u(x, y, t) 在点 (x_i, y_j, t_n) 处的离散 值. x 方向和 y 方向的一、二阶导数的中心差分算子分别定义如下

$$\delta_{x}u_{i,j}^{n} = \frac{u_{i+1,j}^{n} - u_{i-1,j}^{n}}{2h_{x}} \qquad \delta_{x}^{2}u_{i,j}^{n} = \frac{u_{i+1,j}^{n} - 2u_{i,j}^{n} + u_{i-1,j}^{n}}{h_{x}^{2}}$$
(4)

$$\delta_{y}u_{i,j}^{n} = \frac{u_{i,j+1}^{n} - u_{i,j-1}^{n}}{2h_{y}} \qquad \qquad \delta_{y}^{2}u_{i,j}^{n} = \frac{u_{i,j+1}^{n} - 2u_{i,j}^{n} + u_{i,j-1}^{n}}{h_{y}^{2}} \tag{5}$$

1.1 四阶精度紧致格式

将方程(1) 改写为

(6)

$$u_{t} = f(x, y, t) + \alpha (u_{xx} + u_{yy}) - p(x, y, t)u_{x} - q(x, y, t)u_{y}$$

对二阶导数 u_{xx} 和 u_{yy} 采用如下逼近:

$$u_{xx} = 2\delta_x^2 u - \delta_x u_x + O(h_x^4) \tag{7}$$

$$u_{yy} = 2\delta_{y}^{2}u - \delta_{y}u_{y} + O(h_{y}^{4})$$
(8)

将(7),(8) 式代入(6) 式,考虑其在点(x_i, y_i)的值,得到

$$(u_{i})_{i,j} = f_{i,j} + 2\alpha \delta_{x}^{2} u_{i,j} + 2\alpha \delta_{y}^{2} u_{i,j} - (\alpha \delta_{x} + p_{i,j})(u_{x})_{i,j} - (\alpha \delta_{y} + q_{i,j})(u_{y})_{i,j} + O(h_{x}^{4} + h_{y}^{4})$$
(9)
为了使(9) 式空间保持四阶精度, 对 u_{x} 和 u_{y} 的计算采用如下四阶 Padé 公式^[9]

$$\frac{1}{6}(u_x)_{i-1,j} + \frac{2}{3}(u_x)_{i,j} + \frac{1}{6}(u_x)_{i+1,j} = \frac{u_{i+1,j} - u_{i-1,j}}{2h_x} + O(h_x^4)$$
(10)

$$\frac{1}{6}(u_{y})_{i,j-1} + \frac{2}{3}(u_{y})_{i,j} + \frac{1}{6}(u_{y})_{i,j+1} = \frac{u_{i,j+1} - u_{i,j-1}}{2h_{y}} + O(h_{y}^{4})$$
(11)

考虑(9) 式在第n+1时间层的离散值, 对 u_t 采用如下二阶 BDF^[10-11]进行离散

$$(u_{t})_{i,j}^{n+1} = \frac{3}{2\tau} u_{i,j}^{n+1} - \frac{2}{\tau} u_{i,j}^{n} + \frac{1}{2\tau} u_{i,j}^{n-1} + O(\tau^{2})$$
(12)

舍去高阶项,可得

$$-\left(\frac{4\alpha}{h_{x}^{2}}+\frac{4\alpha}{h_{y}^{2}}+\frac{3}{2\tau}\right)u_{i,j}^{n+1}+\frac{2\alpha}{h_{x}^{2}}(u_{i+1,j}^{n+1}+u_{i-1,j}^{n+1})+\frac{2\alpha}{h_{y}^{2}}(u_{i,j+1}^{n+1}+u_{i,j-1}^{n+1})=$$

$$p_{i,j}^{n+1}(u_{x})_{i,j}^{n+1}+\frac{\alpha}{2h_{x}}\left[(u_{x})_{i+1,j}^{n+1}-(u_{x})_{i-1,j}^{n+1}\right]+q_{i,j}^{n+1}(u_{y})_{i,j}^{n+1}+\frac{\alpha}{2h_{y}}\left[(u_{y})_{i,j+1}^{n+1}-(u_{y})_{i,j-1}^{n+1}\right]-$$

$$\frac{2}{\tau}u_{i,j}^{n}+\frac{1}{2\tau}u_{i,j}^{n-1}-f_{i,j}^{n+1}$$
(13)

式(13) 即为求解方程(1)的四阶紧致格式,截断误差为 $O(\tau^2 + h_x^4 + h_y^4)$,本文称之为(2,4)格式.该格式 涉及3个时间层,除了初始时刻的值已知外,还需求得第一时间步的值,才可以向下计算.因此,考虑(9) 式在第 $n + \frac{1}{2}$ 时间层的值,时间导数项采用 C-N 格式离散,空间项采用加权平均方法离散,即可得到

$$\frac{1}{\tau}(u_{i,j}^{n+1} - u_{i,j}^{n}) = \frac{1}{2}(G_{i,j}^{n+1} + G_{i,j}^{n}) + O(\tau^{2} + h_{x}^{4} + h_{y}^{4})$$
(14)

其中G为(9)式的右端项.

在文献[12]中已经证明当 $K \leq 6(K$ 代表精度)时,BDF 是无条件稳定的.另外,由式(13)可以看出, 在每个时间步上,该格式为5点模板的全隐格式.为了得到u(x, y, t)的计算值,(14)式中出现的 $u_x \exists u_y$ 除需知道其内点值,还需知道其在边界点处的值,为保持与内点差分格式同样的精度,对边界上的 u_x, u_y 采用一致四阶边界条件^[2]计算.

1.2 六阶精度紧致格式

为了得到方程(1)的六阶精度的格式,需由 Taylor 级数展开得到一、二阶导数的六阶近似公式

$$u_{x} = \delta_{x}u - \frac{h_{x}^{2}}{6}u_{xxx} - \frac{h_{x}^{4}}{120}u_{x}^{(5)} + O(h_{x}^{6})$$
(15)

$$u_{y} = \delta_{y}u - \frac{h_{y}^{2}}{6}u_{yyy} - \frac{h_{y}^{4}}{120}u_{y}^{(5)} + O(h_{y}^{6})$$
(16)

$$u_{xx} = 2\delta_x^2 u - \delta_x u_x + \frac{h_x^4}{360}u_x^{(6)} + O(h_x^6)$$
(17)

$$u_{yy} = 2\delta_{y}^{2}u - \delta_{y}u_{y} + \frac{h_{y}^{4}}{360}u_{y}^{(6)} + O(h_{y}^{6})$$
(18)

将(15)-(18)式代入(6)式,有

$$-2\alpha \left(\delta_{x}^{2}u + \delta_{y}^{2}u\right) + \alpha \left(\delta_{x}u_{x} + \delta_{y}u_{y}\right) + p\delta_{x}u + q\delta_{y}u - \frac{h_{x}^{2}p}{6}u_{xxx} - \frac{h_{y}^{2}q}{6}u_{yyy} - \frac{h_{x}^{4}p}{120}u_{x}^{(5)} - \frac{h_{y}^{4}p}{120}u_{y}^{(5)} - \frac{\alpha h_{x}^{4}}{360}u_{x}^{(6)} - \frac{\alpha h_{y}^{4}}{360}u_{y}^{(6)} = f - u_{t}$$

$$\tag{19}$$

为使(19)式具有六阶精度,需对其中的三阶导数项 u_{xxx} 和 u_{yyy} 进行四阶离散,对五阶导数项 $u_{x}^{(5)}$ 和 $u_{y}^{(5)}、六 阶导数项 u_{x}^{(6)}$ 和 $u_{y}^{(6)}$ 进行二阶离散,为此采用如下离散公式

$$u_{xxx} = 2\delta_x^2 u_x - \delta_x u_{xx} + O(h_x^4)$$
(20)

$$u_{yyy} = 2\delta_{y}^{2}u_{y} - \delta_{y}u_{yy} + O(h_{y}^{4})$$
(21)

$$u_x^{(5)} = \frac{180}{h_x^4} (u_x - \delta_x u + \frac{h_x^2}{6} \delta_x^2 u_x) + O(h_x^2)$$
(22)

$$u_{y}^{(5)} = \frac{180}{h_{y}^{4}} (u_{y} - \delta_{y}u + \frac{h_{y}^{2}}{6} \delta_{y}^{2} u_{y}) + O(h_{y}^{2})$$
(23)

$$u_x^{(6)} = \frac{240}{h_x^4} (u_{xx} - \delta_x^2 u + \frac{h_x^2}{12} \delta_x^2 u_{xx}) + O(h_x^2)$$
(24)

$$u_{y}^{(6)} = \frac{240}{h_{y}^{4}} (u_{yy} - \delta_{y}^{2}u + \frac{h_{y}^{2}}{12} \delta_{y}^{2} u_{yy}) + O(h_{y}^{2})$$
(25)

将(20)-(25)式代入(19)式,考虑其在点(x_i, y_i)的值,即可得到如下半离散的紧致格式

$$\frac{5p_{i,j}}{2}\delta_{x}u_{i,j} - \frac{4\alpha}{3}\delta_{x}^{2}u_{i,j} - \frac{3p_{i,j}}{2}(u_{x})_{i,j} + \alpha\delta_{x}(u_{x})_{i,j} - \frac{7h_{x}^{2}p_{i,j}}{12}\delta_{x}^{2}(u_{x})_{i,j} - \frac{2\alpha}{3}(u_{xx})_{i,j} + \frac{h_{x}^{2}p_{i,j}}{2}\delta_{x}(u_{xx})_{i,j} - \frac{\alpha h_{x}^{2}}{18}\delta_{x}^{2}(u_{xx})_{i,j} + \frac{5q_{i,j}}{2}\delta_{y}u_{i,j} - \frac{4\alpha}{3}\delta_{y}^{2}u_{i,j} - \frac{3q_{i,j}}{2}(u_{y})_{i,j} + \alpha\delta_{y}(u_{y})_{i,j} - \frac{7h_{x}^{2}p_{i,j}}{2}\delta_{y}(u_{y})_{i,j} - \frac{2\alpha}{3}(u_{y})_{i,j} + \frac{h_{y}^{2}q_{i,j}}{6}\delta_{y}(u_{yy})_{i,j} - \frac{\alpha h_{y}^{2}}{18}\delta_{y}^{2}(u_{yy})_{i,j} = f_{i,j} - (u_{t})_{i,j} + O(h_{x}^{6} + h_{y}^{6})$$
(26)

为了使(26)式具有六阶精度,对u_x和u_y采用文献[9]中的六阶差分公式计算,u_{xx}和u_{yy}采用文献[13]中的六阶差分公式计算

$$\frac{1}{3}(u_x)_{i-1,j} + (u_x)_{i,j} + \frac{1}{3}(u_x)_{i+1,j} = \frac{1}{9} \cdot \frac{u_{i+2,j} - u_{i-2,j}}{4h_x} + \frac{14}{9} \cdot \frac{u_{i+1,j} - u_{i-1,j}}{2h_x} + O(h_x^6)$$
(27)

$$\frac{1}{3}(u_{y})_{i,j-1} + (u_{y})_{i,j} + \frac{1}{3}(u_{y})_{i,j+1} = \frac{1}{9} \cdot \frac{u_{i,j+2} - u_{i,j-2}}{4h_{y}} + \frac{14}{9} \cdot \frac{u_{i,j+1} - u_{i,j-1}}{2h_{y}} + O(h_{y}^{6})$$
(28)

$$-\frac{1}{8}(u_{xx})_{i-1,j} + (u_{xx})_{i,j} - \frac{1}{8}(u_{xx})_{i+1,j} = \frac{3(u_{i+1,j} - 2u_{i,j} + u_{i-1,j})}{h_x^2} - \frac{9[(u_x)_{i+1,j} - (u_x)_{i-1,j}]}{8h_x} + O(h_x^6)$$

$$-\frac{1}{8}(u_{yy})_{i,j-1} + (u_{yy})_{i,j} - \frac{1}{8}(u_{yy})_{i,j+1} =$$
(29)

$$\frac{3(u_{i,j+1} - 2u_{i,j} + u_{i,j-1})}{h_y^2} - \frac{9[(u_y)_{i,j+1} - (u_y)_{i,j-1}]}{8h_y} + O(h_y^6)$$
(30)

考虑(26)式在第n+1时间层的值,对 u_i 采用三阶 BDF^[10]进行离散

$$(u_{t})_{i,j}^{n+1} = \frac{11}{6\tau} u_{i,j}^{n+1} - \frac{3}{\tau} u_{i,j}^{n} + \frac{3}{2\tau} u_{i,j}^{n-1} - \frac{1}{3\tau} u_{i,j}^{n-2} + O(\tau^{3})$$
(31)

略去高阶项,可得

$$\left(\frac{8\alpha}{3h_x^2} + \frac{8\alpha}{3h_y^2} + \frac{11}{6\tau}\right) u_{i,j}^{n+1} + \left(\frac{5p_{i,j}^{n+1}}{4h_x} - \frac{4\alpha}{3h_x^2}\right) u_{i+1,j}^{n+1} - \left(\frac{5p_{i,j}^{n+1}}{4h_x} + \frac{4\alpha}{3h_x^2}\right) u_{i-1,j}^{n+1} + \left(\frac{5q_{i,j}^{n+1}}{4h_y} - \frac{4\alpha}{3h_y^2}\right) u_{i,j+1}^{n+1} - \left(\frac{5q_{i,j}^{n+1}}{4h_y} + \frac{4\alpha}{3h_y^2}\right) u_{i,j+1}^{n+1} = \left(\frac{7p_{i,j}^{n+1}}{12} - \frac{\alpha}{2h_x}\right) (u_x)_{i+1,j}^{n+1} + \frac{p_{i,j}^{n+1}}{3} (u_x)_{i,j}^{n+1} + \left(\frac{7p_{i,j}^{n+1}}{12} + \frac{\alpha}{2h_x}\right) (u_x)_{i+1,j}^{n+1} + \frac{p_{i,j}^{n+1}}{3} (u_x)_{i,j+1}^{n+1} + \left(\frac{\alpha}{18} - \frac{h_x p_{i,j}^{n+1}}{12}\right) (u_{xx})_{i+1,j}^{n+1} + \frac{5\alpha}{9} (u_{xx})_{i,j}^{n+1} + \left(\frac{\alpha}{18} + \frac{h_y q_{i,j}^{n+1}}{12}\right) (u_{yy})_{i,j+1}^{n+1} + \frac{5\alpha}{9} (u_{yy})_{i,j}^{n+1} + \left(\frac{\alpha}{18} + \frac{h_y q_{i,j}^{n+1}}{12}\right) (u_{yy})_{i,j+1}^{n+1} + \frac{3}{2\tau} u_{i,j}^{n-1} + \frac{1}{3\tau} u_{i,j}^{n-2} + f_{i,j}^{n+1} \right)$$

$$(32)$$

(32) 式即为求解方程(1) 的六阶紧致格式,截断误差为 $O(\tau^3 + h_x^6 + h_y^6)$,本文称之为(3,6)格式.由 (32) 式可以看出,在每一个时间步上,该格式仍为5点模板的全隐格式.该格式涉及4个时间层,除了 初始时刻的值已知外,还需求得第一、第二时间层的值,方可向下计算.为此,第一、第二时间层中 u_t 分别 用(14),(12) 式离散,并分别令n=0和n=1,可得上述2个时间步的计算值.由文献[12]可知,(32) 式也 是无条件稳定的.尽管前两个时间步精度不够三阶,但只用其完成前两个时间步的计算,当时间推进到第3 个时间步以后,全部采用三阶 BDF 计算,因此并不影响格式的整体精度,这一点在文献[10-11]中已经得到 了验证,本文也会在后面的算例中进行验证.为了得到u(x, y, t)的计算值,(32) 式中出现的 u_x 和 u_y 以 及 u_{xx} 和 u_{yy} 除需知道其内点值,还需知道其在边界点处的值,为保持与内点差分格式同样的精度,边界上 的 u_x, u_y, u_{xx} 和 u_{yy} 采用六阶精度的边界格式^[9] 计算.

2 数值实验

本文将利用以下 4 个问题进行数值实验,验证(2,4) 格式和(3,6) 格式的稳定性和有效性,文中涉及 到的误差及收敛阶定义如下:

1) 最大绝对误差:

$$L_{\infty} = \max_{0 \leqslant i, j \leqslant N} |u_{i,j}^{M} - U_{i,j}^{M}|$$

2) L₂范数误差:

$$L_{2} = \sqrt{h^{2} \sum_{i,j=0}^{N} |u_{i,j}^{M} - U_{i,j}^{M}|^{2}}$$

3) 收敛阶:

$$Rate = \frac{\log\left(\frac{E_1}{E_2}\right)}{\log\left(\frac{h_1}{h_2}\right)}$$

其中 $U_{i,j}^{M}$ 表示点 (x_{i}, y_{j}, t_{M}) 处的精确解, $u_{i,j}^{M}$ 表示点 (x_{i}, y_{j}, t_{M}) 处的数值解, E_{1} 和 E_{2} 分别表示空间 步长为 h_{1} 和 h_{2} 时相对应的最大绝对误差或 L_{2} 误差,计算时x方向和y方向取相同空间步长h.所有数 值算例的程序均使用 Fortran77 计算机语言编写,在具有 8GB内存、Intel Core i5-8250u处理器的电脑上 调试运行.

问题1 考虑如下非齐次对流扩散问题

$$\frac{\partial u}{\partial t} + 10 \frac{\partial u}{\partial x} + 10 \frac{\partial u}{\partial y} - \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) = f(x, y, t) \qquad 0 \leqslant x, y \leqslant 1, t \geqslant 0$$

其精确解为 $u(x,t) = e^{-t}xy(1-x)(1-y)$,初边值条件及右端项f(x,y,t)均由精确解给出.

表1给出了问题1当 $\tau = h^2$, t = 0.5时的计算结果.从表中可以看出,本文(2,4)格式和文献[6]格式 在空间上均达到了四阶精度,但本文(2,4)格式的计算结果比BTCS格式和文献[6]格式更好;本文(3,6) 格式在空间上达到了六阶精度(网格为64时的数值已经达到机器精度,所以收敛阶受到影响不准确),且最 大绝对误差比(2,4)格式的小2~3个数量级,计算结果更精确.当h = 0.01, t = 0.5时,不同时间步长 τ 下的 L_{∞} 误差、收敛阶及 CPU时间由表2给出.从表中可以看出,本文(2,4)格式时间上达到的精度为二 阶,本文(3,6)格式时间上达到的精度为三阶,这与理论分析一致;另外当 τ 较大时计算收敛慢,所用的 CPU时间相对较长,计算过程中(3,6)格式需要计算在节点处的一、二阶导数值,因此所用的计算时间比 (2,4)格式长.

格式	8	16	Rate	32	Rate	64	Rate
BTCS 格式	1.02(-5)	2.46(-6)	2.05	6. 12(− 7)	2.00	1.61(-7)	1.92
文献[6]格式	3.42(-5)	2.13(-6)	4.00	1.34(-7)	3.99	8.41(-9)	3.99
(2,4)格式	1.00(-7)	6. 34(− 9)	3.98	3.95(-10)	4.00	1.88(-11)	4.39
(3,6)格式	1.19(-9)	1.86(-11)	6.00	2.95(-13)	5.99	1.06(-14)	4.80

表1 问题1当 $\tau = h^2$, t = 0.5时的最大绝对误差 L_{∞} 及收敛阶

表 2 问题 1 当 h = 0.01, t = 0.5 时的最大绝对误差 L_{∞} , 收敛阶及 CPU 时间

_		(2,4)格式			(3,6)格式	
T –	L _∞ 误差	Rate	CPU 时间 /s	L _∞ 误差	Rate	CPU 时间 /s
0.1	4.468(-6)		117.915	7.834(-7)		291.554
0.05	1.034(-6)	2.11	140.962	4.703(-8)	4.05	457.931
0.025	2.193(-7)	2.34	205.844	5.064(-9)	3.12	661.285
0.012 5	2.739(-8)	3.00	265.160	6.699(—10)	2.92	851.442

问题2 考虑如下变系数对流扩散问题

$$\frac{\partial u}{\partial t} + 100tx \frac{\partial u}{\partial x} - 100ty \frac{\partial u}{\partial y} - \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) = f(x, y, t) \qquad 0 \le x, y \le 1, t \ge 0$$

其精确解为 $u(x, t) = txy(1-x)(1-y)e^{x+y}$,初边值条件及右端项f(x, y, t)均由精确解给出.

表 3 给出了问题 2 当 $\tau = h^2$, t = 0.25 时本文格式与 C-N 格式和 BTCS格式的 L_{∞} 误差及收敛阶的比较. 从表中可以看出, C-N 格式和 BTCS格式在空间上达到的精度均为二阶,本文(2,4)格式在空间上达到的 精度为四阶,而本文(3,6)格式空间上达到的精度为六阶,且(3,6)格式的计算结果误差更小,充分验证 了本文两种格式的精确性和有效性.另外,上述两个例子的计算结果进一步说明低精度的启动步并不影响 格式的整体精度.

NI	C-N 榕	C-N 格式		BTCS 格式		格式	(3,6)	(3,6)格式	
1 N	L _∞ 误差	Rate	L∞ 误差	Rate	L _∞ 误差	Rate	 L∞ 误差	Rate	
10	5.10(-3)		5.24(-4)		1.36(-6)		8.88(-8)		
20	1.38(-4)	1.89	1.39(-4)	1.91	3.01(-8)	5.49	7.37(-10)	6.91	
40	3.53(-5)	1.97	3.54(-5)	1.97	1.34(-9)	4.48	5.69(-12)	7.01	
80	8.89(-6)	1.99	8.89(-6)	1.99	9.06(-11)	3.88	4.36(-14)	7.02	

表 3 问题 2 当 $\tau = h^2$, t = 0.25 时的 L_{∞} 误差及收敛阶

问题 3 考虑如下高斯脉冲问题

 $\frac{\partial u}{\partial t} + p \frac{\partial u}{\partial x} + q \frac{\partial u}{\partial y} = 0.01 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) \qquad 0 \leqslant x, \ y \leqslant 2, \ t \ge 0$

其精确解为 $u(x, y, t) = \frac{1}{4t+1} e^{-\frac{(x-pt-0.5)^2+(y-qt-0.5)^2}{a(4t+1)}}$,初边值条件由精确解给出.

表4给出了问题3当h=0.02时对不同的t,p,q,\tau,高阶紧致差分格式(HOC-ADD^[4]、有理型高 精度紧致差分格式(RHOC-ADD^[5]及本文(2,4)格式和(3,6)格式的L_∞误差和L₂误差的比较.从 表中可以看出,对于给定的t,p,q,τ,本文(2,4)格式的计算误差比文献[4]格式小,但比文献[5] 格式的计算误差略大,(3,6)格式的计算结果明显比文献[4]和文献[5]格式的计算结果更精确.定 义配克立数(Peclet number)为 $Pe = \frac{ph}{\alpha} = \frac{qh}{\alpha}$,图1和图2给出了问题3当配克立数Pe分别为2和 2000时,在计算区域1.2 ≤ x, y ≤ 1.8内,不同格式计算解和解析解的等值线,其中虚线所示为解 析解,实线所示为计算解.从图1可以看出,当Pe = 2时,本文(2,4)格式、(3,6)格式、文献[4] 格式以及文献[5]格式的计算解均能与解析解吻合得很好,能准确捕获移动脉冲,产生以(1.5,1.5) 为中心的脉冲;随着Pe增大到2000,从图2可以看出(2,4)格式的计算解与解析解之间的吻合度产 生了微弱的偏差,文献[4]格式的计算解与解析解之间产生了相当大的偏差,而本文(3,6)格式和文 献[5]格式的计算解仍能与解析解高度吻合,说明本文(3,6)格式与文献[5]格式一样能有效地模拟 此类波的传播问题.

t	p = q	τ	格式	L _∞ 误差	L_2 误差
1	1	2. 5×10^{-3}	HOC-ADI	2.066(-4)	1.904(-5)
			RHOC-ADI	6.059(-4)	5.365(-5)
			(2,4)格式	4.457(-4)	1.183(-4)
			(3,6)格式	1.522(-5)	3.665(-6)
0.1	10	2.5 \times 10 ⁻⁴	H OC-ADI	5.998(-2)	3.048(-3)
			RHOC-ADI	3.128(-3)	1.748(-4)
			(2,4)格式	1.139(-2)	1.566(-3)
			(3,6)格式	6.800(-4)	8.664(-5)
0.01	100	2.5 \times 10 ⁻⁵	H OC-ADI	1.691(-1)	9.809(-3)
			RHOC-ADI	7.462(-3)	3.751(-4)
			(2,4)格式	2.546(-2)	2.899(-3)
			(3,6)格式	1.651(-3)	1.821(-4)
0.001	1 000	2.5 \times 10 ⁻⁶	H OC-ADI	1.884(-1)	1.094(-2)
			RHOC-ADI	8.394(-3)	4.113(-4)
			(2,4)格式	2.800(-2)	3.119(-3)
			(3,6)格式	1.834(-3)	1.989(-4)

表 4 问题 3 当 h = 0.02 时在不同参数下的 L_{∞} 误差和 L_2 误差

问题 4 考虑如下非线性方程

$$\frac{\partial u}{\partial t} + u \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \right) = \alpha \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) \qquad 0 \leqslant x, y \leqslant 1, t \geqslant 0$$

0

其精确解为 $u(x, y, t) = \frac{1}{1 + e^{\frac{x+y-t}{2a}}}$,初边值条件由其给出.

表 5 给出了问题 4 当 t = 1, $\tau = h^2$ 时,本文(2,4)格式和(3,6)格式在 α 分别取1和0.1时的最 大绝对误差与收敛阶.从表中可以看出,本文(2,4)格式在空间上达到的精度是四阶,(3,6)格式达到 的精度是六阶(网格为64, $\alpha = 1$ 时最大绝对误差的值已经达到机器精度),这与理论推导是一致的,从 表中还可以看出, $\alpha = 1$ 时所用的CPU时间比 $\alpha = 0.1$ 时的长,(3,6)格式的CPU时间比(2,4)格式的 长.表6给出了当N = 7, $\tau = 0.01$, $\alpha = 1$ 时,t = 15和t = 20的计算解与精确解的绝对误差.表中数 据表明,本文(2,4)格式的计算误差比文献[14]格式小5~6个数量级,与文献[15]格式的计算结果大 致相当;本文(3,6)格式的计算结果比文献[14]格式小7~9个数量级,比文献[15]格式小2~3个数 量级.因此,对于此类非齐次边界的Burgers方程,本文两种高精度紧致差分格式非常有效.图3给出了 $N = 20, t = 1, \tau = 0.01, \alpha = 0.1$ 时本文两种格式的绝对误差和文献[15]格式的绝对误差比较,从图 中可以看出,本文(2,4)格式的绝对误差与文献[15]格式的绝对误差大致相当,但本文(3,6)格式的计

图 1 t = 1, $\tau = 2.5 \times 10^{-3}$, Pe = 2, $1.2 \le x$, $y \le 1.8$ 时的等值线图

c. RHOC-ADI格式和精确解

d. HOC-ADI格式和精确解

图 2 t = 0.001, $\tau = 2.5 \times 10^{-6}$, Pe = 2000, $1.2 \le x$, $y \le 1.8$ 时的等值线图

表 5	问题 4 当 τ	$= h^{2}, t =$	1 时的最大绝对误差 L	。,收敛阶和 CPU 时间
-----	----------	----------------	--------------	---------------

N	$\alpha = 1$ 的(2, 4) 格式			α = 1 的(3, 6) 格式			$\alpha = 0.1 \text{ b}(2, 4) \text{ kd}$			α = 0.1的(3,6)格式		
	L _∞ 误差	Rate	CPU 时间	L _∞ 误差	Rate	CPU 时间	L 误差	Rate	CPU时间	L 误差	Rate	CPU时间
8	9.30(-8)		0.31	1.48(-10)		0.36	8.24(-4)		0.11	6. 94(−4)		0.17
16	5.82(-9)	4.00	5.05	1.33(-12)	6.81	7.28	2.53(-5)	5.03	1.46	1.02(-5)	6.08	2.09
32	3.66(-10)	3.99	77.24	1.88(-14)	6.14	227.1	1.40(-6)	4.17	22.03	9 . 87(−8)	6.70	30.29
64	2.28(-11)	4.00	1162	1.03(-14)	_	5128	8.56(-8)	4.04	326.1	8.33(-10)	6.89	457.6

表 6 问题 4 当 N = 7, $\tau = 0.01$, $\alpha = 1$ 时的绝对误差

			t =	15	t = 20					
x	У	(2,4)格式	(3,6)格式	文献[14]	文献[15]	(2,4)格式	(3,6)格式	文献[14]	文献[15]	
1 7	$\frac{1}{7}$	5.33(-11)	1.27(-13)	1.70(-5)	2.51(-11)	4. 35(−12)	3.66(-15)	1.40(-6)	2.08(-12)	
$\frac{3}{7}$		1.09(-10)	9.71(-14)	3.24(-5)	5.02(-11)	8.89(-12)	1.32(-14)	2.67(-6)	4. 16(−12)	
5		1.07(-10)	1.78(-13)	3. 04(− 5)	5.04(-11)	8.79(-12)	1.29(-14)	2.50(−6)	4.18(-12)	

			t = 15			t = 20						
	x	У	(2,4)格式	(3,6)格式	文献[14]	文南	t[15]	(2,4)格式	(3,6)格式	文献[14]	文献[15]	
	$\frac{1}{7}$	$\frac{3}{7}$	1.09(-10)	9. 74(−14)	3.24(-5)	5.02	(-11)	8.89(-12)	1.45(-14)	2.67(-6)	4.16(-12)	
	$\frac{3}{7}$		2.34(-10)	7.58(-13)	6. 49(− 5)	1.08	(-10)	1.92(-11)	7.61(-14)	5.40(-6)	8.93(-12)	
	5 7		2.26(-10)	9.51(-13)	5.93(-5)	1.06	(-10)	1.86(-11)	8. 55(−14)	4.88(-6)	8.80(-12)	
	$\frac{1}{7}$	$\frac{5}{7}$	1.07(-10)	1.79(-13)	3.04(-5)	5.04	(-11)	8.79(-12)	1.67(-14)	2.50(-6)	4.18(-12)	
	$\frac{3}{7}$		2.26(-10)	9.51(-13)	5.93(-5)	1.06	(-10)	1.86(-11)	8.87(-14)	4.88(-6)	8.79(-12)	
	5 7		2.20(-10)	1.14(-12)	5.51(-5)	1.05	(-10)	1.81(-11)	1.01(-13)	4. 54(−6)	8.72(-12)	
精确值	1.0 0.8 0.6 0.4 0.2 0	0.2 0.4 0.6 x	0.8 1.0 0 0.	2 0.4 0.6 y	0.8 1.0	误差	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	$ \begin{array}{c} 10\\ 09\\ 08\\ 07\\ -6\\ 05\\ 04\\ 03\\ 02\\ 0.2\\ 0.2\\ 0.2 \end{array} $	+ 0.6 0.8 1.		0.6 0.8 1.0 y	
			a. 精确解						b. 文献[15]格	式的绝对误差		
0.0 0.0 20 20 0.0 0.0 0.0 0.0 0.0 0.0 0.	000 10 000 09 000 08 000 07 000 06 000 05 000 04 000 03 000 02 000 01 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.4 0 x		0.2 0.4 0.6 y	0.8 1.0	误差	0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00 0.000 00	3 0 2 7 2 4 2 1 1 8 1 5 1 2 0 9 0 6 0 3 0.2 0.			0.6 0.8 1.0 y	
		c. ((2, 4)格式的绝	对误差					d. (3,6)格	式的绝对误差		

3 结论

本文针对二维非稳态变系数对流扩散方程,对时间的离散分别采用二阶 BDF 和三阶 BDF,对空间的 离散分别采用四阶紧致差分公式和六阶紧致差分公式,得到了两种无条件稳定的紧致差分格式,格式的 截断误差分别为 $O(\tau^2 + h_x^4 + h_y^4)$ 和 $O(\tau^3 + h_x^6 + h_y^6)$.最后通过4个数值算例验证了本文格式的精确性 和稳定性.计算结果显示,本文四阶格式与文献中四阶格式具有相同精度,而本文六阶格式较文献中格 式具有更高精度.

参考文献:

- [1] DING H F, ZHANG Y X. A New Difference Scheme with High Accuracy and Absolute Stability for Solving Convection-Diffusion Equations [J]. Journal of Computational and Applied Mathematics, 2009, 230(2): 600-606.
- [2] 王涛,刘铁钢. 求解对流扩散方程的一致四阶紧致格式 [J]. 计算数学, 2016, 38(4): 391-404.
- [3] KALITA J C, DALAL D C, DASS A K. A Class of Higher Order Compact Schemes for the Unsteady Two-Dimensional Convection-Diffusion Equation with Variable Convection Coefficients [J]. International Journal for Numerical Methods in Fluids, 2002, 38(12): 1111-1131.
- [4] KARAA S, ZHANG J. High Order ADI Method for Solving Unsteady Convection-Diffusion Problems [J]. Journal of Computational Physics, 2004, 198(1): 1-9.
- [5] TIAN Z F. A Rational High-Order Compact ADI Method for Unsteady Convection-Diffusion Equations [J]. Computer Physics Communications, 2011, 182(3): 649-662.
- [6] TIAN Z F, GE Y B. A Fourth-Order Compact ADI Method for Solving Two-Dimensional Unsteady Convection-Diffusion Problems [J]. Journal of Computational and Applied Mathematics, 2007, 198(1): 268-286.
- [7] 罗传胜,李春光,董建强,等.求解对流扩散方程的一种高精度紧致差分格式[J].西南大学学报(自然科学版),2018, 40(9):91-95.
- [8] SUN H W, LI L Z. A CCD-ADI Method for Unsteady Convection-Diffusion Equations [J]. Computer Physics Communications, 2014, 185(3): 790-797.
- [9] LELE S K. Compact Finite Difference Schemes with Spectral-Like Resolution [J]. Journal of Computational Physics, 1992, 103(1): 16-42.
- [10] STRIKWERDA J C. High-Order Schemes for Incompressible Viscous Flow [J]. International Journal for Numerical Methods in Fluids, 1997, 24(7): 715-734.
- [11] LI M, TANG T. A Compact Fourth-Order Finite Difference Scheme for Unsteady Viscous Incompressible Flows [J]. Journal of Scientific Computing, 2001, 16(1): 29-45.
- [12] HAIRER E, WANNER G. On the Instability of the BDF Formulas [J]. SIAM Journal on Numerical Analysis, 1983, 20(6): 1206-1209.
- [13] CHU P C, FAN C W. A Three-Point Combined Compact Difference Scheme [J]. Journal of Computational Physics, 1998, 140(2): 370-399.
- [14] HAMMAD D A, EL-AZAB M S. 2N Order Compact Finite Difference Scheme with Collocation Method for Solving the Generalized Burger's-Huxley and Burger's-Fisher Equations [J]. Applied Mathematics and Computation, 2015(258): 296-311.
- [15] YANG X J, GE Y B, ZHANG L. A Class of High-Order Compact Difference Schemes for Solving the Burgers' Equations [J]. Applied Mathematics and Computation, 2019(358): 394-417.

责任编辑 张枸