Vol. 47 No. 10

Journal of Southwest China Normal University (Natural Science Edition)

Oct. 2022

DOI: 10. 13718/j. cnki. xsxb. 2022. 10. 008

有限群的 SS-半置换 p-子群与 p-幂零性 $^{\circ}$

李彬彬, 钟祥贵, 张博儒, 卢家宽

广西师范大学 数学与统计学院, 广西 桂林 541006

摘要: 设 G 是有限群,H 是群 G 的子群. 如果群 G 中存在子群 B 使得 G = HB,并且 H 与 B 的所有 Sylow p 一子群 置换,其中素数 p 满足 (p, |H|) = 1,则称 H 在 G 中 SS 一半置换. 假设 P 是群 G 的 Sylow p 一子群,D 是 P 的非 平凡子群. 利用有限群 G 的 Sylow p 一子群 P 的 |D| 阶子群的 SS 一半置换性来研究有限群 G 的结构,给出了有限群 G 是 p 一幂零群的两个充分条件.

关 键 词: ρ-子群; SS-半置换; ρ-幂零

中图分类号: O152.1

文献标志码: A

文章编号: 1000 - 5471(2022)10 - 0054 - 05

On SS-Semipermutable p-Subgroups and p-Nilpotency of Finite Groups

Li Binbin, Zhong Xianggui, Zhang Boru, Lu Jiakuan

School of Mathematics and Statistics, Guangxi Normal University, Guilin Guangxi 541006, China

Abstract: Let G is a finite group, and H is a subgroup of G. If there exists a subgroup B of G such that G = HB and H permutes with all of Sylow p-subgroup of B, where prime p is a coprime with the order of H, then H is SS-semipermutable group of G. Suppose P is a Sylow p-subgroup of group G and D is a nontrivial subgroup of P. In this note, two sufficient conditions for a Sylow p-nilpotency of finite group G are obtained by using the SS-semipermutation of some subgroups of Sylow p-subgroup of group G.

Key words: *p*-subgroup; SS-semipermutable; *p*-nilpotency

本文所涉及的群都是有限群. 在有限群论中,利用具有某些性质的子群来研究有限群的结构是人们感兴趣的课题^[1-4]. 而素数幂阶子群相对于其他子群而言,结构简单、可控性强,于是许多学者通过对 p -子群的研究,给出了有限群的 p -幂零性的判别条件^[5-9],例如 Frobenius 定理^[10]. 从 Frobenius 定理出发,人们希望运用较少的 p -子群给出有限群的 p -幂零性的判别条件,例如 Glauberman-Thompson 定理^[10].

为了方便起见,我们给出一些概念. 设 H 为群G 的子群,如果 H 与G 的每个 Sylow 子群置换,则称子群 H 为群G 的S -置换子群^[11]. 文献[11]引入 S -置换的概念之后,文献[12]进一步推广了 S -置换性,提出了 SS -置换的概念:设 H 为群G 的子群,如果 G 中存在子群 B 使得 G = HB, H 与 B 的每个 Sylow 子

① 收稿日期: 2022-02-17

基金项目: 国家自然科学基金项目(11861015, 12161010); 广西省自然科学基金项目(2020GXNSFAA 238045); 广西省自然科学基金项目(2020 GXNSFBA297121); 2020 年度广西高校中青年教师科研基础能力提升项目(2020KY02019).

作者简介: 李彬彬, 硕士研究生, 主要从事有限群的研究.

通信作者:张博儒,讲师.

群都置换,则称子群 H 在群 G 中 SS -置换. 在此基础上,文献 [13] 提出了 SS -半置换的概念:设 H 为群 G 的子群,如果 G 中存在子群 B 使得 G=HB,H 与 B 的所有 Sylow p -子群置换,其中素数 p 满足 (p, |H|)=1,则称 H 是 SS -半置换的. 本文主要通过研究较少的素数幂阶子群的 SS -半置换性对有限群的结构的影响,给出了有限群 G 是 p -幂零群的两个充分条件.

引理 $\mathbf{1}^{[13]}$ 设 H 是群 G 的 SS -半置换子群,则:

- (i) 如果 $H \leq K \leq G$, 则 H 是 K 的 SS -半置换子群;
- (ii) 如果 N 是 G 的正规子群, H 是 p -子群, 则 HN/N 是 G/N 的 SS -半置换子群.

引理 $2^{[14]}$ 设有限群 G 是 π -可分的. 如果 $O_{\pi'}(G) = 1$,则 $C_G(O_{\pi}(G)) \subseteq O_{\pi}(G)$.

引理 $\mathbf{3}^{[6]}$ 设 A, B 是有限群 G 的真子群. 如果 G = AB,则 $G = AB^x$, $G \neq AA^x$ 对任意 $x \in G$ 成立.

引理 4 设 N 是 G 的初等交换正规 p 一子群. 如果 N 中存在一个子群 D ,1 < |D| < |N| ,使得 N 的 所有 |D| 阶子群在 N 中 SS 一半置换,则 N 中存在一个极大子群正规于 G.

证 令 $\{M_1, M_2, \dots, M_s\}$ 是 N 在 G 中互不共轭的极大子群的集合. 由于 N 是初等交换 p -群,则 M_i 是 N 中一些 |D| 阶子群的乘积. 因为 N 的 |D| 阶子群都在 G 中 SS -半置换,则 M_i 在 G 中 SS -半置换,即存在 B,使得

$$G = M_i B$$
 $M_i Q = Q M_i$

其中 Q 是 B 的任一 Sylow q 一子群, $q \neq p$. 由 M_i 是 p 一子群知 $Q \in \mathrm{Syl}_q(G)$. 又由 $M_i < N \leqslant O_p(G)$ 知 $M_i = O_p(G) \cap M_i Q$

从而 $Q \leq N_G(M_i)$. 由 q 的任意性知 $O^p(G) \leq N_G(M_i)$. 于是 $|G:N_G(M_i)| = p^{fi}$. 故在 G 中与 M_i 共轭的子群个数为 p^{fi} ,由 $N \leq G$ 知这些子群均在 N 中. 于是 N 中所有极大子群的个数为 $\sum_{i=1}^s |G:N_G(M_i)|$. 由 p -群计数原理:

$$\sum_{i=1}^{s} \mid G: N_{G}(M_{i}) \mid \equiv 1 \pmod{p}$$

存在 $t \in \{1, 2, \dots, s\}$ 使得 $f_t = 0$. 从而 $M_t \triangleleft G$.

定理 1 设 G 是有限群,P 是 G 的 Sylow p -子群,p 是奇素数. 如果 P 的每个极大子群 P_1 在 G 中都 是 SS -半置换群,且 $N_G(P_1)$ 是 p -幂零的,则 G 是 p -幂零的.

证 假设 G 是极小阶反例,则 G 是非 p -幂零的.

步骤 1 $O_{p'}(G) = 1$.

假设 $O_{p'}(G) \neq 1$. 为了方便起见,记 $\overline{G} = G/O_{p'}(G)$,并且令 $\overline{M} = M/O_{p'}(G)$ 是 \overline{P} 的极大子群. 易知 $P \cap M$ 是 P 的极大子群,则根据引理 1(ii) 可知 $\overline{P \cap M}$ 在 \overline{G} 中也是 SS -半置换的. 根据假设,我们可知 $N_G(P \cap M)$ 是 p -幂零的,进一步可知

$$N_{\bar{G}}(\overline{P \cap M}) = N_{G}(P \cap M)O_{p'}(G)/O_{p'}(G)$$

是 p -幂零的. 由此可见 \bar{G} 满足定理假设条件,因此 \bar{G} 是 p -幂零的,从而 G 也是 p -幂零的,与题设矛盾. 因此 $O_{p'}(G)=1$.

步骤 2 如果 $P \leq T < G$,则 $T \neq p$ -幂零的.

根据引理 1(i) 和 $N_T(P_1) \leq N_G(P_1)$,我们容易看到 T 满足定理假设,因此根据 G 的极小性知 T 是 p - 幂零的.

步骤 3 $G/O_{\mathfrak{g}}(G)$ 是 p-幂零的, 且 $C_{\mathfrak{g}}(O_{\mathfrak{g}}(G)) \leq O_{\mathfrak{g}}(G)$. 实际上, G 是 p-可解的.

设 J(P) 是 P 的 Thompson 子群,容易看到 $P \leq N_G(Z(J(P)))$.

如果 $N_G(Z(J(P))) < G$,则根据步骤 2 可知 $N_G(Z(J(P)))$ 是 p -幂零的. 进一步根据 Glauberman-Thompson 定理知 G 是 p -幂零的,与题设矛盾. 因此 $N_G(Z(J(P))) = G$.

进一步,我们可知 $O_p(G) \neq 1$. 假设 $N \to G$ 的极小正规 p -子群. 注意到 $N \leqslant O_p(G) \leqslant P$. 如果 N = P,则 $G/O_p(G) = G/P$ 是 p -幂零的. 因此可设 N < P. 当 N 是 P 的极大子群时,则由假设知 $G = N_G(N)$ 是

p-幂零的,与题设矛盾.

进一步我们假设 $|P:N| \geqslant p^2$,根据引理 1(ii) 可知 G/N 满足定理假设条件,再由 G 的极小性可知 G/N 是 p -幂零的,从而 $G/O_p(G)$ 是 p -幂零的. 进一步可知,G 是 p -可解的. 再根据 $O_{p'}(G) = 1$ 和引理 2 可知 $C_G(O_p(G)) \leqslant O_p(G)$.

步骤 4 G = PQ, $Q \in Syl_q(G)$, $p \neq q$.

设 $q \neq p$ 是 | G | 的素因子. 由于 G 是 p -可解的,因此根据文献 [15] 的定理 6. 3. 5 可知,存在 $Q \in Syl_q(G)$ 使得 $PQ \leq G$. 如果 PQ < G,则由步骤 2 知 PQ 是 p -幂零的,从而 $Q \unlhd PQ$. 于是

$$O_p(G)Q = O_p(G) \times Q$$

再根据步骤3可知

$$Q \leqslant C_G(O_p(G)) \leqslant O_p(G)$$

矛盾. 因此 G = PQ.

步骤 5 G 有唯一的极小正规子群 N,并且 $\Phi(G) = 1$. 实际上, $N = O_{\mathfrak{p}}(G)$.

如果极小正规子群 N 不唯一,则存在另一个 G 的极小正规子群 $N_1 \neq N$. 由于 G 是 p -可解的并且 $O_{p'}(G) = 1$,那么 N_1 和 N 都包含在 P 中. 运用步骤 3 的方法,我们可知 G/N_1 和 G/N 都是 p -幂零的. 因此 $G \lesssim G/N_1 \times G/N$ 是 p -幂零的,与题设矛盾. 因此 N 是唯一的.

如果 $\Phi(G) \neq 1$,则 $N \leq \Phi(G)$. 然而 G/N 是 p -幂零的,所以 $G/\Phi(G)$ 是 p -幂零的. 进一步可知,G 是 p -幂零的,矛盾. 因此 $\Phi(G) = 1$. 再根据文献[16] 的定理 4.5 可知 $O_p(G) = N$.

步骤 6 | $N \mid = p$, 且存在 G 的极大子群 M, 使得 $P \cap M$ 是 P 的极大子群.

因为 $\Phi(G)=1$,所以存在G的极大子群 M_1 ,使得 $N \nsubseteq M_1$. 故 $G=NM_1$. 设 M_p' 为 M_1 的 Sylow p -子 群,则 NM_p' 是G 的 Sylow p -子 根据 Sylow 定理可知,存在 $g \in G$ 使得

$$(NM'_{p})^{g} = N(M'_{p})^{g} = P$$

不妨取 $M=M^e$. 由引理 3 可得 G=NM,并且 $M_p=P\cap M$ 是 M 的 Sylow p -子群. 由于 G 是 p -可解的,且 N 是 G 的极小正规 p -子群,所以 N 是初等交换 p -群. 又由于 $N\cap M \unlhd M$,因此 $N\cap M \unlhd G$. 进一步,根据 N 的极小性可知 $N\cap M=1$. 因为 N 为 p -群,所以 $P\cap M$ 是 P 的真子群. 进一步可知,存在 P 的极大子群 P_1 使得 $P\cap M \leq P_1$. 显然

$$M = \langle M_q \mid M_q \in Syl_q(M), q \in \pi(M) \rangle$$

由于 P_1 是 P 的极大子群,所以 P_1 是 SS -半置换的. 再根据 SS -半置换的定义可知, $P_1M_q=M_qP_1$ 对任意的素数 $q\neq p$ 成立. 因为 $M_p\leqslant P$,所以 $P_1M=MP_1$. 由 M 的极大性,我们可知 $P_1M=G$ 或者 $P_1\leqslant M$. 若 $P_1M=G$,则

$$P = P \cap P_1 M = P_1 (P \cap M) = P_1$$

矛盾. 故 $P_1 \leq M$. 因此我们可以得到 |N| = p.

步骤7 最后的矛盾.

因为 $G \neq p$ -可解的, 并且 $O_{p'}(G) = 1$, 所以根据引理 2 及 N 的极小性可知

$$C_G(O_p(G)) = O_p(G)$$

又由于 $N = O_{\mathfrak{p}}(G)$ 是交换群,因此 $N = C_{\mathfrak{g}}(N)$. 再根据文献[16] 的定理 5.7 可得

$$M \simeq G/N = N_G(N)/C_G(N) \lesssim Aut(N)$$

又因为 N 是 p 阶循环群,因此 Aut(N) 也是循环群.进一步,我们可知 M 也是循环群.故

$$M \leqslant N_G(P \cap M)$$

因为 $P \cap M \neq P$ 的极大子群,所以

$$P \cap M \triangleleft P$$
 $N \leqslant N_G(P \cap M)$

进一步,根据题设可以得到 $G = NM \leq N_G(P \cap M)$ 是 p -幂零的,矛盾.

定理 2 设 G 是有限群,P 是 G 的 Sylow p -子群,p 是奇素数. 如果 P 存在一子群 D , 1 < |D| < |P| , 使得 P 中所有 |D| 阶的子群 H 在 P 中 SS -半置换,且 $N_G(H)$ 是 p -幂零的,则 G 是 p -幂零的.

证 假设定理 2 不成立,设 G 是极小阶反例.

步骤 1 $O_{p'}(G) = 1$.

设 $O_{p'}(G) \neq 1$. 令 $\overline{G} = G/O_{p'}(G)$. 容易看到 \overline{G} 满足定理 2 的假设条件,因此根据 G 的极小性可知 \overline{G} 是 p -幂零的. 进一步可知 G 是 p -幂零的,矛盾. 因此 $O_{p'}(G) = 1$.

步骤 2 $P \leq T < G$,则 $T \neq p$ -幂零的.

由于 $N_T(H) \leq N_G(H)$, 且 $N_G(H)$ 是 p -幂零的, 因此 $N_T(H)$ 也是 p -幂零的. 再根据引理 1(i) 可知 T 满足定理中的假设条件, 故由 G 的极小性可知 T 是 p -幂零的.

步骤 3 $G/O_{\mathfrak{p}}(G)$ 是 \mathfrak{p} -幂零的,且 $C_{\mathfrak{g}}(O_{\mathfrak{p}}(G)) \leqslant O_{\mathfrak{p}}(G)$.

设 J(P) 是 P 的 Thompson 子群,容易得到 $P \leq N_G(Z(J(P)))$. 如果 $N_G(Z(J(P))) < G$,那么根据步骤 2 可知 $N_G(Z(J(P)))$ 是 p -幂零的. 进一步根据 Glauberman-Thompson 定理可得 G 是 p -幂零的,与题设矛盾. 因此 $N_G(Z(J(P))) = G$,即 $Z(J(P)) \triangleleft G$. 故 $O_p(G) \neq 1$. 为了方便起见,我们设 $\overline{G} = G/O_p(G)$,并且令

$$G_1/O_p(G) = N_{\bar{G}}(Z(J(\bar{P})))$$
 $P_1/O_p(G) = Z(J(\bar{P}))$

如果 $G_1 = G$,那么 $P_1 \unlhd G$. 容易看出 $P_1 > O_p(G)$,则与 $O_p(G)$ 是 G 中最大的正规 p -子群矛盾. 故 $G_1 < G$. 进一步,根据步骤 2 可知 G_1 是 p -幂零的,因此 $N_{\bar{G}}(Z(J(\bar{P})))$ 也是 p -幂零的.再根据 Glauberman-Thompson 定理可知 $G/O_p(G)$ 是 p -幂零的.显然可得 G 是 p -可解的.再根据 $O_{p'}(G) = 1$ 和引理 2 可得 $C_G(O_p(G)) \leqslant O_p(G)$.

步骤 4 G = PQ, $Q \in Syl_q(G)$, $p \neq q$.

设 $q \neq p$, $q \in \pi(G)$. 由于 $G \neq p$ -可解的,因此根据文献[15] 的定理 6.3.5 可知,存在 $Q \in \operatorname{Syl}_q(G)$ 使得 $PQ \leq G$. 如果 PQ < G,则由步骤 2 知 $PQ \neq p$ -幂零的,从而 $Q \leq PQ$. 于是

$$O_{p}(G)Q = O_{p}(G) \times Q$$

再根据步骤3可知

$$Q \leqslant C_G(O_{\mathfrak{p}}(G)) \leqslant O_{\mathfrak{p}}(G)$$

矛盾. 因此 G = PQ.

步骤 5 *G* 中存在唯一的极小正规子群 N,且 G/N 是 p -幂零的. 实际上, $\Phi(G) = 1$, $N = O_p(G)$. 因为 G 是 p -可解的,且 $O_{p'}(G) = 1$,所以 N 是初等交换 p -群.

首先我们断言 |N| < |D|. 如果 |N| = |D|,则根据定理假设可知 $G = N_G(N)$ 是 p -幂零的,与题设矛盾.

现在我们假设 |N| > |D|,则 N 的所有 |D| 阶子群在 G 中 SS -半置换. 再根据引理 4 可知,N 中存在的极大子群 N_0 正规于 G,与 N 的极小性矛盾. 因此 |N| < |D|.

如果 |P:D|=p,则 $D \neq P$ 的极大子群. 进一步根据定理 1 可得 $G \neq p$ -幂零的,与题设矛盾. 因此 |D|>p. 容易验证 G/N 满足定理假设,则根据 G 的极小性可得 G/N 是 p -幂零的.

若存在另外一个极小正规子群 $N_1 \neq N$,则 $G \simeq G/(N \cap N_1) \lesssim G/N \times G/N_1$ 是 p -幂零的,与题设矛盾. 因此 N 是唯一的. 在这里容易验证 $\Phi(G) = 1$. 再根据文献[16]V 的定理 4.5 可得 $N = O_s(G)$.

步骤 6 最后的矛盾.

根据步骤 4 和 Burnside $p^a q^b$ 定理可得 G 可解. 进一步根据文献 [16] III 的定理 1.7 可得,G 中存在极大子群 M,使得 $M \unlhd G$,且 |G:M| 是素数. 如果 |G:M| = q,则 $P \leq M$. 再根据步骤 2 可知 M 是 p -幂零的. 设 M 的正规 p -补为 K,则 K char $M \unlhd G$,由步骤 1, $K \leq O_{p'}(G) = 1$,从而

$$P = M \triangleleft G$$
 $N = O_p(G) = P$

进一步,根据引理 4 可得 N 中存在G 的极大子群 N_2 正规于 G,与 N 的极小性矛盾. 因此 |G:M|=p. 由于 $M \leq G$,那么根据文献 [16] II 的命题 2. 3(6) 可得 $P \cap M \in \operatorname{Syl}_p(M)$. 进一步可得 $P \cap M \notin P$ 的极大子群. 再根据引理 1(i) 可知 $P \cap M$ 的每个 |D| 阶子群 H_1 在 M 中 SS -半置换, $N_M(H_1) \leq N_G(H_1)$ 是 p -幂零的,从而 M 满足定理假设,由 G 的极小性知 M 是 p -幂零的, $M = (P \cap M) \times O^p(M)$,其中

 $O^{p}(M)$ char $M \leq G$

从而 $O^p(M) \triangleleft G$. 于是

$$G = PM = P(P \cap M)O^{p}(M) = PO^{p}(M)$$

故 G 是 p -幂零的,矛盾.

参考文献:

- [1] 曹建基,高建玲. 非正规循环子群的正规化子皆极大的两类有限可解群 [J]. 西南大学学报(自然科学版),2018,40(12):81-85.
- [2] 高建玲, 毛月梅. 有限群的 δ-置换子群 [J]. 西南大学学报(自然科学版), 2021, 43(10): 105-109.
- [3] 高丽, 汪忠碧, 陈贵云. 用极大交换子群阶的集合刻画 S_n [J]. 西南师范大学学报(自然科学版), 2022, 47(4): 21-24.
- [4] 周红,刘建军.有限群的局部化光-子群 [J]. 西南师范大学学报(自然科学版), 2022, 47(2): 7-10.
- [5] 郭秀云, 岑嘉评. 有限群的极小子群与 p-幂零性 [J]. 中国科学(A辑), 2002, 32(9): 782-790.
- [6] GUO W B, SHUM K P, SKIBA A N. X-Semipermutable Subgroups of Finite Groups [J]. Journal of Algebra, 2007, 315(1): 31-41.
- 「7] 庞琳娜,邱燕燕,卢家宽, p-幂零群的若干充分条件「J],广西师范大学学报(自然科学版),2014,32(2):64-66.
- [8] KONG Q J. New Characterizations of *p*-Nilpotency of Finite Groups [J]. Journal of Algebra and Its Applications, 2021, 20(11): 1-6.
- [9] 袁媛, 唐康, 刘建军. S -拟正规嵌入子群与有限群的 p -幂零性 [J]. 西南师范大学学报(自然科学版), 2020, 45(6): 1-4.
- [10] 徐明曜. 有限群导引(下册) [M]. 北京: 科学出版社, 1999.
- [11] KEGEL O H. Sylow-Gruppen und Subnormalteiler Endlicher Gruppen [J]. Mathematische Zeitschrift, 1962, 78(1): 205-221.
- [12] LI S R, PENG F, BAI Y R. C-Supplemented and SS-Quasinormal Subgroups of Finite Groups [J]. Guangxi Sciences, 2010, 17(1): 1-4.
- [13] 玉素贞. ss -半置换子群对有限群结构的影响[D]. 桂林: 广西师范大学, 2009.
- [14] ISAACS I. Finite Group Theory [M]. Providence, Rhode Island: American Mathematical Society, 2008.
- [15] GORENSTEIN D. Finite Groups [M]. New York: Chelsea Publishing Company, 1980.
- [16] 徐明曜, 有限群导引(上册) [M], 北京: 科学出版社, 1999,

责任编辑 廖坤