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Abstract: Crop disease identification is of great significance for ensuring the healthy growth of
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crops and the stable development of agricultural production. In recent years, many studies have
shown that the introduction of data augmentation techniques has significantly improved the ac-
curacy of crop disease recognition models. This study proposes the application of data augmen-
tation techniques to enhance the performance of tobacco target spot disease recognition models.
The research employs various data augmentation methods, including image flipping, grayscale
adjustment, brightness adjustment and chroma adjustment, as well as MixUp and CutMix data
augmentation methods, to expand and diversify the image data of tobacco target spot disease.
The data augmentation effects on the tobacco target spot disease image recognition models were
verified using mainstream image recognition models, namely AlexNet, GoogleNet, and Res-
Netl01. The results show that after the application of data augmentation, the training set accu-
racy and test set accuracy of the image recognition models were increased by up to 2.80% and 3.
78 %, respectively, compared to those without data augmentation. Meanwhile, the training set
loss and test set loss were reduced by 10.84% and 4.73% , respectively. The study concludes
that the use of data augmentation techniques can improve the performance of tobacco target spot
disease recognition models. This method provides a data processing approach for the research of
tobacco disease image recognition models and offers a scientific basis for the application of image
recognition models.
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