Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2017 Volume 39 Issue 12
Article Contents

Yan-ru WEN, Jian-li WANG. Stable Isotope Oxygen-18 (δ18O) in Rainfall and Snowfall in Heilongjiang and Their Relationship with Moisture Transport[J]. Journal of Southwest University Natural Science Edition, 2017, 39(12): 119-126. doi: 10.13718/j.cnki.xdzk.2017.12.018
Citation: Yan-ru WEN, Jian-li WANG. Stable Isotope Oxygen-18 (δ18O) in Rainfall and Snowfall in Heilongjiang and Their Relationship with Moisture Transport[J]. Journal of Southwest University Natural Science Edition, 2017, 39(12): 119-126. doi: 10.13718/j.cnki.xdzk.2017.12.018

Stable Isotope Oxygen-18 (δ18O) in Rainfall and Snowfall in Heilongjiang and Their Relationship with Moisture Transport

More Information
  • Received Date: 16/10/2016
    Available Online: 20/12/2017
  • MSC: P426.6

  • Based on the original data from two Chinese GNIP observation stations (in Harbin and Qiqihar) and the reanalysis data of National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP/NCAR) of NOAA, this study investigated the variations of stable isotopes, temperature and precipitation amount in interannual and seasonal patterns, and then explained the amount effect and temperature effect of δ18O in rainfall and snowfall. Using a vapor flux model and wind vector analysis to monitor the precipitation air masses in the two study areas, we analyzed the differences in water vapor transport between Harbin and Qiqihar. The results suggested that variations of δ18O in precipitation in Heilongjiang exhibited a significant seasonal variability and was generally lower than in other monsoon regions. The Local Meteoric Water Line (LMWL) of Qiqihar (δD=7.58δ18O-0.14, R=0.98, n=50) and Harbin (δD=5.52δ18O-19.42, R=0.83, n=30) were calculated. We found that the snowfall samples had a higher slope and intercept than rainfall samples, indicating an isotopic fractionation pattern induced by a non-equilibrium secondary evaporation during the process of falling, which occurred as a result of rayleigh distillation. In interannual and seasonal patterns, δ18O was in a significant positive correlation with temperature (δ18O=0.35T-16.26, R=0.53, n=80;δ18O=0.17T-13.09, R=0.27, n=10;δ18O=0.08P-19.34, R=0.42, n=12) and in an insignificant correlation with precipitation amount. According to the wind vector field and the moisture flux vector analysis, we found that the moisture sources during summer were mainly influenced by warm watervaper of the Pacific Ocean, while the form of precipitation was mainly snowfall during winter seasons, which moisture sources were closely related to the cold wapervaper from the Mongolia and Siberian High, westerly vapor transportation and local re-evaporation.
  • 加载中
  • [1] DANSGAARD W. Stable Isotopes in Precipitation [J]. Tellus, 1964, 16(4): 436-468. doi: 10.3402/tellusa.v16i4.8993

    CrossRef Google Scholar

    [2] 王建力, 王丽, 何潇, 等.重庆地区末次冰期气候变化的石笋记录研究[J].地理科学, 2006, 26(5): 580-585.

    Google Scholar

    [3] YUAN Dao-xian, CHENG Hai, EDWARDS R L, et al. Timing, Duration, and Transitions of the Last Interglacial Asian Monsoon [J]. Science, 2004, 304(5670): 575-578. doi: 10.1126/science.1091220

    CrossRef Google Scholar

    [4] DANSGAARD W. The Abundance of δ18O in Atmospheric Water and Water Vapour [J]. Tellus, 1953, 5(4): 461-469. doi: 10.3402/tellusa.v5i4.8697

    CrossRef Google Scholar

    [5] 朱大运, 王建力.青藏高原冰芯重建古气候研究进展分析[J].地理科学进展, 2013, 32(10): 1535-1544. doi: 10.11820/dlkxjz.2013.10.011

    CrossRef Google Scholar

    [6] SMITH K L, KUSHNER P J. Linear Interference and the Initiation of Extratropical Stratosphere-Troposphere Interactions [J]. Journal of Geophysical Research Atmospheres, 2012, 117(D13): 13107.

    Google Scholar

    [7] TIAN Li-de, YAO Tan-dong, SCHUSTER P F, et al. Oxygen-18 Concentrations in Recent Precipitation and Ice Cores on the Tibetan Plateau [J]. Journal of Geophysical Research, 2003, 108(D9): 4293-4302.

    Google Scholar

    [8] ZHANG Xin-ping, MASAYOSHI N, YAO T D, et al. Variations of Stable Isotopic Compositions in Precipitation on the Tibetan Plateau and Its ARegions [J]. Science in China Series D: Earth Sciences, 2002, 45(6): 481-493. doi: 10.1360/02yd9050

    CrossRef Google Scholar

    [9] 王建力, 何潇, 王昕亚, 等.重庆金佛山石笋的同位素年龄和古气候信息[J].中国岩溶, 2005, 24(4): 265-269.

    Google Scholar

    [10] 柳鉴容, 宋献方, 袁国富, 等.西北地区大气降水δ18O的特征及水汽来源[J].地理学报, 2008, 63(1): 12-22. doi: 10.11821/xb200801002

    CrossRef Google Scholar

    [11] LIU Jian-rong, SONG Xian-fang, SUN Xiao-min, et al. Isotopic Composition of Precipitation Over Arid Northwestern China and Its Implications for the Water Vapor Origin [J]. Journal of Geophysical Research, 2009, 19(2): 164-174.

    Google Scholar

    [12] YAO Tan-dong, MASSON-DELMOTTE V, GAO J, et al. A Review of Climatic Controls on δ18O in Precipitation Over the Tibetan Plateau: Observations and Simulations [J]. Reviews of Geophysics, 2013, 51(4): 525-548. doi: 10.1002/rog.v51.4

    CrossRef Google Scholar

    [13] YIN Chang-liang, YAO Tan-dong, TIAN Li-de, et al. Temporal Variations of δ18O of Atmospheric Water Vapor at Delingha [J]. Science in China Series D: Earth Sciences, 2008, 51(7): 966-975. doi: 10.1007/s11430-008-0076-6

    CrossRef Google Scholar

    [14] ZHANG Xin-ping, LIU Jian-rong, SUN Wei-zheng, et al. Relations Between Oxygen Stable Isotopic Ratios in Precipitation and Relevant Meteorological Factors in Soutewest China [J]. Science in China Series D: Earth Sciences, 2007, 50(4): 571-581. doi: 10.1007/s11430-007-2047-8

    CrossRef Google Scholar

    [15] LIU Jian-rong, SONG Xian-fang, YUAN Guo-fu, et al. Characterisyics of δ18O in Precipitation Over Eastern Monsoon China and the Water Vapor Sources [J]. Chinese Science Bulletin, 2010, 55(2): 200-211. doi: 10.1007/s11434-009-0202-7

    CrossRef Google Scholar

    [16] 王建力, 何潇, 李清, 等.重庆新崖洞4.5ka以来气候变化的石笋微量元素记录及环境意义[J].地理科学, 2010, 30(6): 910-915.

    Google Scholar

    [17] 黄一民, 章新平, 孙葭, 等.长沙大气水汽、降水中稳定同位素季节变化及与水汽输送关系[J].地理科学, 2015, 35(4): 498-506.

    Google Scholar

    [18] 陈中笑, 程军, 郭品文, 等.中国降水稳定同位素的分布特点及其影响因素[J].大气科学学报, 2010, 33(6): 667-679.

    Google Scholar

    [19] 郑琰明, 钟巍, 彭晓莹, 等.粤西云浮市大气降水δ18O与水汽来源的关系[J].环境科学, 2009, 30(3): 637-643.

    Google Scholar

    [20] 姚檀栋, 秦大河, 田立德, 等.青藏高原冰芯高分辨率气候环境记录研究[J].中国科技成果, 2016(10): 44-45. doi: 10.3772/j.issn.1009-5659.2016.10.019

    CrossRef Google Scholar

    [21] LIU Jian-rong, SONG Xian-fang, YUAN Guo-fu et al. Stable Isotopic Compositions of Precipitation in China [J]. Tellus Series B-Chemical & Physical Meteorology, 2014, 66(1): 39-44.

    Google Scholar

    [22] TAN Ming. Circulation Effect: Response of Precipitation δ18O to the ENSO Cycle in Monsoon Regions of China [J]. Climate Dynamics, 2014, 42(3-4): 1067-1077. doi: 10.1007/s00382-013-1732-x

    CrossRef Google Scholar

    [23] 田立德, 姚檀栋.青藏高原冰芯高分辨率气候环境记录研究进展[J].中国科技成果, 2015(10): 44-45. doi: 10.3772/j.issn.1009-5659.2015.10.017

    CrossRef Google Scholar

    [24] 温艳茹, 王建力.重庆地区大气场降水中氢氧同位素变化特征及与大气环流的关系[J].环境科学, 2016, 37(7): 2462-2469.

    Google Scholar

    [25] YU Wu-sheng, MA Yao-ming, SUN Wei-zhen, et al. Climatic Significance of Delta O-18 Records from Precipitation on the Western Tibetan Plateau [J]. Chinese Science Bulletin, 2009, 54(16): 2732-2741.

    Google Scholar

    [26] LI De-shuai, SUN Jian-hua, FU Shen-ming, et al. Spatiotemporal Characteristics of Hourly Precipitation Over Central Eastern China During the Warm Season of 1982-2012 [J]. International Journal of Climatology, 2015, 36(8): 3148-3160.

    Google Scholar

    [27] ISHIZAKI Y, YOSHIMURA K, KANAE S, et al. Interannual Variability of H2 18O in Precipitation Over the Asian Monsoon Region [J]. Journal of Geophysical Research, 2012, 117(16): 68-68.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)  /  Tables(1)

Article Metrics

Article views(1953) PDF downloads(144) Cited by(0)

Access History

Other Articles By Authors

Stable Isotope Oxygen-18 (δ18O) in Rainfall and Snowfall in Heilongjiang and Their Relationship with Moisture Transport

Abstract: Based on the original data from two Chinese GNIP observation stations (in Harbin and Qiqihar) and the reanalysis data of National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP/NCAR) of NOAA, this study investigated the variations of stable isotopes, temperature and precipitation amount in interannual and seasonal patterns, and then explained the amount effect and temperature effect of δ18O in rainfall and snowfall. Using a vapor flux model and wind vector analysis to monitor the precipitation air masses in the two study areas, we analyzed the differences in water vapor transport between Harbin and Qiqihar. The results suggested that variations of δ18O in precipitation in Heilongjiang exhibited a significant seasonal variability and was generally lower than in other monsoon regions. The Local Meteoric Water Line (LMWL) of Qiqihar (δD=7.58δ18O-0.14, R=0.98, n=50) and Harbin (δD=5.52δ18O-19.42, R=0.83, n=30) were calculated. We found that the snowfall samples had a higher slope and intercept than rainfall samples, indicating an isotopic fractionation pattern induced by a non-equilibrium secondary evaporation during the process of falling, which occurred as a result of rayleigh distillation. In interannual and seasonal patterns, δ18O was in a significant positive correlation with temperature (δ18O=0.35T-16.26, R=0.53, n=80;δ18O=0.17T-13.09, R=0.27, n=10;δ18O=0.08P-19.34, R=0.42, n=12) and in an insignificant correlation with precipitation amount. According to the wind vector field and the moisture flux vector analysis, we found that the moisture sources during summer were mainly influenced by warm watervaper of the Pacific Ocean, while the form of precipitation was mainly snowfall during winter seasons, which moisture sources were closely related to the cold wapervaper from the Mongolia and Siberian High, westerly vapor transportation and local re-evaporation.

  • 降水中稳定同位素信息是研究局地和全球范围水分循环的重要载体,也是运用冰芯、石笋等沉积物来重建古气候的重要依据[1-3].降水过程作为水循环中的主要环节,在地表圈层间物质、能量和信息交换过程中最为活跃,降水中稳定同位素的组成在时空分布上呈现较大的变化,主要是受到水汽蒸发与凝结、降水形式(雨雪雾等)以及大气环流的影响[5-6].水汽相变过程中同位素的组成变化符合Rai-leigh分馏模式,降水较水汽富集重同位素,剩下的水汽中重同位素贫化,随着降水事件的发生,同一云团影响下的降水和水汽中的重同位素逐渐贫化. Graig曾大范围测定世界各区域的雨雪水和河湖水,计算了降水中δ18O-δD相关关系,将其定义为全球大气降水线(GMWL):δD=8δ18O+10[7].因水汽源地和气象条件的差异,局地大气降水线(LMWL):δD=18O+b中,斜率a和截距b会出现不同程度的偏离,斜率表示相变过程的差异,包括云团再蒸发或降雪等;斜率变化受到海-气互相作用的影响[6],在输送过程中会保持平衡[8].随着同位素数据的逐渐丰富,我国众多学者对全国各区域尺度及流域尺度等的降水中稳定同位素陆续开展了完善而系统的研究[9-13],对氢氧同位素的分布特征其影响因素等均取得了一系列重要的认识[14-20].对降水中氢氧同位素的连续跟踪监测并研究其变化规律和机制,是定量恢复重建古气候和研究区域水循环的基础.

    1961年起,国际原子能机构(IAEA)和世界气象组织(WMO)共同成立了全球降水稳定同位素监测网络(GNIP),对全球降水中稳定同位素及相关气象数据进行连续监测.目前,全球已建立1 000多个降水取样站点,为研究全球及局部地区大气环流及水循环机理提供了丰富的同位素资料.我国于1983年加入GNIP,黑龙江地区有2个监测站点:哈尔滨站(45.68°N,126.62°E,172 m)和齐齐哈尔站(47.38°N,123.92°E,147 m).基于科研需要,2004年我国以中国生态系统研究网络(CERN)各野外台站为依托,建立了中国大气降水同位素网络(CHNIP)对δ18O和δD进行连续系统的观测,黑龙江地区的站点有三江站(47.35°N,133.3°E,55 m)、海伦站(47.45°N,126.93°E,236 m)[15].本文着重分析黑龙江地区两站点中大气降水中氢氧同位素时空变化特征及与降水量、气温的相关关系,探讨大气降水中氢氧同位素与水汽输送的关系,为中高纬度季风区水汽输送和水汽来源提供理论依据,为古气候重建提供大气降水同位素监测的依据.

1.   资料与方法
  • 黑龙江省(121.18°E~135.08°E,43.42°N~53.55°N)位于我国东北部,北隔黑龙江、东隔乌苏里江与俄罗斯相望,西临内蒙古,南邻吉林,地形以平原、丘陵为主(图 1);属温带大陆性季风气候,夏季凉爽短促,冬季寒冷而漫长;年降水量400~650 mm,年均温-5 ℃~5 ℃,无霜期100~150 d,研究区的降水形式主要为降雨和降雪,夏季降水量约占全年降水量的60%,集中降雪期为每年11月至次年1月(图 2).黑龙江地区位于我国东部季风区的最北缘,纬度较高,不同季节水汽来源复杂,不仅受到来自太平洋的暖湿水汽,还受到西风带的水汽来源以及内陆水汽再蒸发.因此探究该地区大气降水δ18O的变化特征及水汽来源,对于中高纬度季风区大气环流和水循环机制的理解具有重要意义.

    根据GNIP黑龙江地区的2个站点数据:哈尔滨站(监测时段1986-1998年,样品数量30个,采样单位:石家庄水文与工程地质研究所)、齐齐哈尔站(监测时段1988-1992年,样品数量50个,采样单位:未知),由于部分样品数据缺失,可用的完整数据样品有80个.所有监测数据记录均为月平均值,根据月平均气温差异,研究区所有样品分为降雨样品和降雪样品,降雪样品采集过程中在室温下将雪融化再收集起来.研究区样品的降水形式包括降雨、降雪、雨夹雪等.其中,齐齐哈尔站有记录降水样品类型,降雨样品32个,雨夹雪样品2个,降雪样品16个;哈尔滨站降水样品类型的记录缺失,本文根据月平均气温分别为-4.6 ℃和-13.8 ℃的两个月为降雪样品,判断哈尔滨站有降雨样品28个,降雪样品2个.

    本文采用的气象资料为美国国家环境预报中心(NCEP/NCAR)提供的逐月再分析格点资料,空间分辨率为水平2.5×2.5网格点,下载地址为http://www.esrl.noaa.gov.用到的数据资料有:地面到300 hPa高度场经向风速vwnd、纬向风速uwnd、比湿shum、通量气压pres.sfc. GrADS气象软件建立模型模拟水汽通量,追踪降水气团输送影响降水中δ18O变化. GrADS使用过程大致包括以下环节:下载数据资料文件及前期处理;编写及检查数据描述文件(*.ctl);设定编写脚本文件(*.gs);进行图形绘制及展示;保存描述文件及图像.

    降水中稳定同位素比值(18O/16O或2H/1H)用相对于维也纳标准平均海洋水(V-SMOW)的千分差来表示:

    式中R水样RV-SMOW分别代表水样中氧或氢的稳定同位素比值和V-SMOW中的稳定同位素比值.降水中稳定同位素比值的加权平均值计算公式为

    式中,δ为加权平均值,Pi为降水量,δi为其相应的稳定同位素值.

2.   结果与分析
  • 大气降水中δ18O与δD之间的关系被定义为全球大气降水线(GMWL):δD=8δ18O+10,其斜率和截距受到水汽来源、输送方式、水汽凝结温度以及降水期间的温度、湿度等的影响[33],使得局地大气降水线(LMWL)的斜率和截距有所偏离.根据GNIP在研究区两站点监测的稳定同位素数据,计算得出两站点大气降水线方程,齐齐哈尔站点:δD=7.58δ18O-0.14,R=0.98,n=50,哈尔滨站点:δD=5.52δ18O-19.4,R=0.83,n=30如图 3(a).综合所有样品数据得到的研究区域大气降水方程为δD=7.49δ18O-0.86,R=0.97,n=80如图 3(b).在大气降水线方程中,斜率a表现出较低值,而斜率值也较低,主要是由于哈尔滨站点较齐齐哈尔纬度偏低,年平均气温高,且位置更靠近海洋,在夏半年季风影响下有更多湿润水汽输送.

    黑龙江地区大气降水线方程δD=7.49δ18O-0.86与柳鉴容[21]通过GNIP和CHNIP的928个样品得出的中国东部季风区大气降水线方程δD=7.48δ18O+ 1.01相比,斜率和截距十分接近.并与CHNIP的三江站δD=7.29δ18O-6.71,海伦站δD=7.71δ18O+ 2.58对比[29],斜率非常相近.首先,降水线方程的相关系数能够说明大气降水中δDδ18O具有很好的相关性;其次,该方程的斜率和截距与全国大气降水线接近,这说明东部季风区大气降水过程中的水汽源地基本都来自于海洋蒸发.黑龙江地区位于东部季风区内纬度较高地区,仅考虑海表面水的蒸发和凝结物降落时2个非平衡蒸发过程对δDδ18O的影响时,由于凝结物降落过程中的蒸发速率与温度成正比,δDδ18O与温度增大的方向相同,即大气水线将沿着稳定同位素比率增大的方向逐渐偏离[22];因此温度越高,湿度越小,偏离程度就越大,大气水线的截距值也将随着偏离的程度而偏向小值[23].因此,黑龙江地区大气水线的斜率和截距值可以较好的反映中高纬度东部季风区的自然地理状况和气象条件.

    为了深入探究研究区不同降水类型对降水中稳定同位素变化的影响,本文根据降水类型的差异将两站点的样品分为5组,试图分别进行δDδ18O值相关性分析,结果如表 1.

    由于哈尔滨站降雪样品和齐齐哈尔站雨夹雪样品数量不足,没有进行相关性分析,根据3组计算结果,16个齐齐哈尔降雪样品与同站点降水样品相比,斜率值较高(7.54),截距值较高(-3.15).与哈尔滨站点降雨样品值对比,差距较大并且都偏高值[6].这和水汽来源和相变过程中的气象条件有很大关系,降雪主要集中在冬半年,降水水汽干燥,降水过程中经过了多次再蒸发,使得降水中δ值偏低,斜率值较高[24].与哈尔滨站点的差异变化则主要是受到纬度较高导致的月平均气温较低和水汽输送距离的不同[24].

  • GNIP监测时间段内,黑龙江地区降水中δ18O、气温、降水量的年际变化特征如图 2所示,其中哈尔滨站年平均气温变化范围是4.17~10.97 ℃,年降水量变化范围是347~655 mm,δ18O的变化范围是-8.26‰~-10.97‰.齐齐哈尔站年平均气温变化范围是3.63~5.94 ℃,年降水量变化范围是350~705 mm,δ18O的变化范围是-12.27‰~-17.58‰.可以看出,两监测站降水量变化不大,但年平均气温有0.5~5 ℃差异,δ18O、δD均在全球降水的变化范围之间,但δ18O、δD值总体偏低,且纬度越高,δ值越低,齐齐哈尔站较哈尔滨站δ值偏低,体现了明显的纬度效应[5],即重同位素随着纬度的升高而逐渐贫化的现象,这主要是瑞利分馏在温度变化和水汽输送过程的体现.

    根据监测时段2个站点的δ18O值与气象资料,对δ18O与该月气温及降水量分别进行回归检验,得出δ18O=0.35T-16.26,R=0.53,n=80;δ18O=0.04P-16.04,R=0.19,n=80.可见,在年际尺度上,δ18O表现出明显的温度效应,即温度是在中高纬度地区影响大气降水中稳定同位素组成的主要因素,δ18O表现为与温度正相关,随着纬度升高,相关性越明显[4, 26];但δ18O与降水量相关性不显著,研究表明,降水量效应往往出现在低纬度的沿海地区,这可能与水汽来源有关,但在中高纬度地区,温度效应大大掩盖了降水量效应[18],使得黑龙江地区δ18O与降水量没有表现出显著的相关性.

    为了探究年际尺度上研究区水汽相变及与气象要素的关系,本文分别对两监测站点的不同降水类型样品与气温、降水量的相关性做回归分析.齐齐哈尔站32个降雨样品与降水量和气温的相关关系为:δ18O=0.01P-12.18,R=0.01,n=32,δ18O=0.39T-16.85,R=0.32,n=32.齐齐哈尔站16个降雪样品与降水量和气温的相关关系如下:δ18O=0.20P-23.39,R=0.04,n=16,δ18O=0.17T-19.86,R=-0.03,n=16.哈尔滨站28个降雨样品与降水量、气温的回归分析如下:δ18O=-0.003P-9.33,R=-0.03,n=28;δ18O=0.05T-10.58,R=-0.02,n=28.其中,降雨和降雪样品和降水量均没有体现出相关性,监测样品和气温的相关性也不显著,只有齐齐哈尔站点的降雨样品和气温表现出相关性,这可能是由于高纬度地区降雨量效应不明显,温度效应在降雪样品中体现也不显著.

  • 黑龙江地区全年内δ18O的变化范围是-26.40‰~-8.02‰,平均值为-14.58‰;δD的变化范围是-207.40‰~-62.95‰,平均值为-110.35‰,表现出夏高冬低的季节变化特征.其中哈尔滨站月平均气温最高月为7月(23.7 ℃),月平均气温最低月为1月(-18.2 ℃),降水量变化范围为3.4~151.4 mm,分别出现在1月和7月. δ18O的变化范围为-5.88‰~-17.81‰,和月均温呈现出显著的正相关,δ18O最低值-17.81‰出现在1月如图 4(a).齐齐哈尔站最低月气温为1月(-18 ℃),月均温最高月为7月(21.9 ℃)和8月(21.8 ℃),月降水量变化范围为1.4~175.6 mm,分别为1月和7月. δ18O的变化范围为-7.70‰~-26.42‰,最低δ18O值在2月(-26.42‰)和12月(-24.11‰),如图 4(b).与哈尔滨站相比,齐齐哈尔站的降水中δ18O值显著偏低,月平均气温较低,且降水量季节变化大.

    根据黑龙江地区两个站点年内δ18O值与相关气象监测数据,分别计算δ18O与月均温(T)、月降水量(P)的回归方程:哈尔滨站:δ18O=0.17T-13.09,R=0.27,n=10;δ18O=0.03P-13.28,R=0.15,n=10.齐齐哈尔站:δ18O=0.42T-17.40,R=0.87,n=12;δ18O=0.08P-19.34,R=0.42,n=12.可以看出,在年内尺度上,黑龙江地区存在显著的温度效应,δ18O与气温表现出明显的正相关;降水量效应却不显著,但是δ18O表现出与月降水量正相关,即夏半年,降水量偏多,δ18O偏高.

  • 我们利用NCEP/NCAR逐月再分析资料计算了1990-1991年的夏季(a-c)、冬季(d-f)逐月整层水汽输送场,结果见图 5,可以看出,6-8月,影响我国季风区的水汽主要来源于印度洋的西南季风和太平洋的东南季风,但影响黑龙江地区的大气降水则主要以东南季风带来的太平洋水汽为主[27],水汽来源于较近的海洋性气团,降水中δ18O表现为高值;12月至次年2月,受蒙古-西伯利亚高压控制,降水较少,且主要是降雪为主,降水中δ18O表现为低值.

3.   结论
  • 研究基于黑龙江地区GNIP两站点降水中稳定同位素以及美国NECP/NCAR逐月再分析数据,分析了黑龙江地区年际尺度和季节尺度下降水中稳定同位素的变化特征,计算两站点不同降水类型下δ18O-δD相关性,以及雨样、雪样中的稳定同位素效应,并利用水汽通量模型追踪季节上影响研究区的降水气团差异,分析了水汽输送过程中两站点间的关系,得出以下结论:

    1) 黑龙江地区大气降水线为δD=7.49δ18O-0.86,R=0.97,n=80,其中哈尔滨站点:δD=5.52δ18O-19.42,R=0.83,n=30,齐齐哈尔站点:δD=7.58δ18O-0.14,R=0.98,n=50.哈尔滨站点斜率a表现出较低值,而斜率值也较低,主要是由于哈尔滨站点较齐齐哈尔纬度偏低,年平均气温高,且位置更靠近海洋,在夏半年季风影响下有更多湿润水汽输送,反映了黑龙江地区的自然地理状况和气象条件.

    2) 研究区降水中δ18O、δD值总体偏低,且纬度越高δ值越低,齐齐哈尔站较哈尔滨站δ值偏低,年内尺度上δ18O表现出夏高冬低的季节变化特征.通过分析两站点不同降水类型中δ18O-δD相关性,降雪样品与降水样品相比,斜率值较高(7.54),截距值较高(-3.15),这和水汽来源和相变过程中的气象条件有很大关系,降雪主要集中在冬半年,降水水汽干燥,降水过程中经过了多次再蒸发,使得降水中δ值偏低,斜率值较高.

    3) 年际尺度上,δ18O与温度线性关系显著(δ18O=0.35T-16.26,R=0.53,n=80),表现出明显的温度效应,但降水量效应不显著(δ18O=0.04P-16.04,R=0.19,n=80),通过两监测站点的不同降水类型样品做回归分析,发现温度效应和降水量效应均不显著.在年内尺度上,哈尔滨站:δ18O=0.17T-13.09,R=0.27,n=10;δ18O=0.03P-13.28,R=0.15,n=10,齐齐哈尔站:δ18O=0.42T-17.40,R=0.87,n=12;δ18O=0.08P-19.34,R=0.42,n=12,存在显著的温度效应,δ18O与气温表现出明显的正相关;降水量效应却不显著,但是δ18O表现出与月降水量正相关,即夏半年,降水量偏多,δ18O偏高.

    4) 运用逐月再分析资料模拟水汽输送场,结果表明,夏季黑龙江地区降水中δ18O呈现出高值,大气降水主要来源于低纬度太平洋的暖湿水汽和局地水汽;冬季风期间降水形式以降雪为主,δ18O值偏低,主要是受到蒙古-西伯利亚高压和高纬度水汽及云团内水汽再蒸发的影响.

Figure (5)  Table (1) Reference (27)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return