Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2018 Volume 40 Issue 4
Article Contents

Zhen-yu JIN, Jian-rong WU. Ulam Stability of Some Fuzzy Number-Valued Functional Equations and Drygas Type Functional Equation[J]. Journal of Southwest University Natural Science Edition, 2018, 40(4): 59-66. doi: 10.13718/j.cnki.xdzk.2018.04.010
Citation: Zhen-yu JIN, Jian-rong WU. Ulam Stability of Some Fuzzy Number-Valued Functional Equations and Drygas Type Functional Equation[J]. Journal of Southwest University Natural Science Edition, 2018, 40(4): 59-66. doi: 10.13718/j.cnki.xdzk.2018.04.010

Ulam Stability of Some Fuzzy Number-Valued Functional Equations and Drygas Type Functional Equation

More Information
  • Corresponding author: Jian-rong WU
  • Received Date: 18/07/2017
    Available Online: 20/04/2018
  • MSC: O177.91

  • The theory of the Ulam stability of equations focuses on conditions under which there exists an exact solution near approximate solutions for a given equation. The present paper investigates the Ulam stability of fuzzy number-valued functional equations in Banach spaces. By considering the unbounded differences between functions and by using the metric defined on a fuzzy number space, the Ulam stability of more general fuzzy number-valued quadratic type and Drygas type functional equations are proved. Moreover, some fundamental properties of the solutions are obtained. The obtained conclusions extend the relevant results in some existing papers.
  • 加载中
  • [1] ULAM S M. Problems in Modern Mathematics[M]. New York: Wiley, 1960.

    Google Scholar

    [2] HYERS D H. On the Stability of the Linear Functional Equation[J]. Proceedings of the National Academy of Sciences, 1941, 27(4): 222-224. doi: 10.1073/pnas.27.4.222

    CrossRef Google Scholar

    [3] RASSIAS T M. On the Stability of the Linear Mapping in Banach Spaces[J]. Proceedings of the American Mathematical Society, 1978, 72(2): 297-300. doi: 10.1090/S0002-9939-1978-0507327-1

    CrossRef Google Scholar

    [4] JUNG S M. Hyers-Ulam-Rassias Stability of Jensen's Equation and Its Application[J]. Proceedings of the American Mathematical Society, 1998, 126(11): 3137-3143. doi: 10.1090/S0002-9939-98-04680-2

    CrossRef Google Scholar

    [5] LEE Y H, JUN K W. A Generalization of the Hyers-Ulam-Rassias Stability of Jensen's Equation[J]. Journal of Mathematical Analysis & Applications, 1999, 246(2): 627-638.

    Google Scholar

    [6] FECHNER W. On the Hyers-Ulam Stability of Functional Equations Connected with Additive and Quadratic Mappings[J]. Journal of Mathematical Analysis & Applications, 2006, 322(2): 774-786.

    Google Scholar

    [7] PISZCZEK M, SZCZAWISKA J. Stability of the Drygas Functional Equation on Restricted Domain[J]. Results in Mathematics, 2015, 68(1): 1-24.

    Google Scholar

    [8] KENARY H A, REZAEI H, GHEISARI Y, et al. On the Stability of Set-Valued Functional Equations with the Fixed Point Alternative[J]. Fixed Point Theory and Applications, 2012, 2012(1): 81-97. doi: 10.1186/1687-1812-2012-81

    CrossRef Google Scholar

    [9] CHU H Y, KIM A, YOO S K. On the Stability of the Generalized Cubic Set-Valued Functional Equation[J]. Applied Mathematics Letters, 2014, 37(6): 7-14.

    Google Scholar

    [10] SUN Y J, PARK C, CHO Y. Hyers-Ulam Stability of a Generalized Additive Set-Valued Functional Equation[J]. Journal of Inequalities and Applications, 2013, 2013(1): 101-106. doi: 10.1186/1029-242X-2013-101

    CrossRef Google Scholar

    [11] MOHIUDDINEA S A, SEVLI H. Stability of Pexiderized Quadratic Functional Equation in Intuitionistic Fuzzy Normed Space[J]. Journal of Computational & Applied Mathematics, 2011, 235(8): 2137-2146.

    Google Scholar

    [12] GORDJI M E, KHODAEI H, KAMYAR M. Stability of Cauchy-Jensen Type Functional Lquation in Generalized Fuzzy Normed Spaces[J]. Computers & Mathematics with Applications, 2011, 62(8): 2950-2960.

    Google Scholar

    [13] MIRMOSTAFAEE A K, MIRZAVAZIRI M, MOSLEHIAN M S. Fuzzy Stability of the Jensen Functional Equation[J]. Fuzzy Sets & Systems, 2008, 159(6): 730-738.

    Google Scholar

    [14] 夏顺友, 胥德平, 王常春.抽象凸空间中广义模糊博弈的结构稳定性[J].西南大学学报(自然科学版), 2013, 35(2): 81-84.

    Google Scholar

    [15] SAADATI R, PARK C. Non-Archimedean L-Fuzzy Normed Spaces and Stability of Functional Equations[J]. Computers & Mathematics with Applications, 2010, 60: 2488-2496.

    Google Scholar

    [16] BAN J. Ergodic Theorems for Random Compact Sets and Fuzzy Variables in Banach Spaces[J]. Fuzzy Sets & Systems, 1991, 44(1): 71-82.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1391) PDF downloads(127) Cited by(0)

Access History

Other Articles By Authors

Ulam Stability of Some Fuzzy Number-Valued Functional Equations and Drygas Type Functional Equation

    Corresponding author: Jian-rong WU

Abstract: The theory of the Ulam stability of equations focuses on conditions under which there exists an exact solution near approximate solutions for a given equation. The present paper investigates the Ulam stability of fuzzy number-valued functional equations in Banach spaces. By considering the unbounded differences between functions and by using the metric defined on a fuzzy number space, the Ulam stability of more general fuzzy number-valued quadratic type and Drygas type functional equations are proved. Moreover, some fundamental properties of the solutions are obtained. The obtained conclusions extend the relevant results in some existing papers.

  • 稳定性是方程最重要的特性之一.泛函方程的稳定性问题起源于文献[1]对于群同态的研究.文献[2]首先证明了在Banach空间中近似可加映射的Ulam稳定性.随后,文献[3]通过考虑无界的柯西差,将文献[2]的结论推广到了线性映射,并得到如下结论:

    XY为Banach空间,若$ f:\;X \longrightarrow Y $满足:对于给定的xyX,存在ε>0和0<p<1,有

    且对于$ \forall t \in {\mathbb{R}} $f(tx)在X上是连续的.则存在唯一的线性映射$ T:\;X \longrightarrow Y $,使得

    自此,众多学者开始研究无界情形下泛函方程的Ulam稳定性.文献[4-5]研究了Jensen方程的Ulam稳定性.文献[6]研究了二次映射方程

    的Ulam稳定性.文献[7]研究了Drygas方程

    的Ulam稳定性.

    值得注意的是,一些泛函方程Ulam稳定性的研究结果被推广到了集值的情形.文献[8]用不动点方法研究了Cauchy-Jensen型可加集值泛函方程、Jensen型可加二次集值泛函方程以及Jensen型三次集值泛函方程的Ulam稳定性.文献[9]讨论了n维三次集值泛函方程的Ulam稳定性.文献[10]定义了更一般化的可加集值泛函方程,并证明了其Ulam稳定性.

    随着模糊分析学的发展,越来越多的学者从模糊分析学的角度去考虑Ulam稳定性.目前,该领域大多数的研究成果都是在模糊赋范空间中得到的(文献[11-13]).文献[14]讨论了抽象凸空间中广义模糊博弈的结构稳定性.而关于模糊数值映射方程的Ulam稳定性的研究结果还很少.

    本文将在Banach空间中研究如下模糊数值映射二次型映射方程

    和Drygas型方程

    的Ulam稳定性.

    文献[11]在模糊赋范空间中讨论了当s=1,fgh为单值奇映射时,方程(1)的Ulam稳定性.文献[15]研究了当g=h=f时,方程(1)的Ulam稳定性,其中f为单值映射.文献[7]利用不动点定理,在Banach空间中着重研究了当s=1,f=g=h=l时,方程(2)的Ulam稳定性,其中f表示单值映射.本文将在Banach中对更一般化的二次型映射方程和Drygas型方程的Ulam稳定性进行讨论,所得的结论在一定程度上推广了文献[7, 11, 15]中的相关结论.

    在本文中,$ \mathbb{N} $$ \mathbb{R} $分别表示自然数集和实数集,$ \mathbb{R}$+=(0,+∞),XY为Banach空间,Pkc(X)表示X中所有非空紧凸集,BYY中的线性子空间.

1.   预备知识
  • 本节首先引入一些关于模糊数及度量的基本概念和性质,其中的定义和结论可参见文献[16].

    定义1  如果一个映射u: $ X \longrightarrow \left[{0, 1} \right] $满足下列条件:

    (ⅰ) ∀α∈(0,1],[u]α={xX: u(x)≥α}∈Pkc(X);

    (ⅱ) u的支撑集[u]0=supp(u)=cl{x: u(x)>0}为紧集.

    则称uX上的模糊数,X上的模糊数的集合记为XF.

    XF上可定义线性结构如下: ∀uvXFs$\mathbb{R} $xX,令:

    则:

    引理1  定义映射$ D:\;{X_F} \times {X_F} \longrightarrow {{\mathbb{R}}_ + } \cup \left\{ 0 \right\} $

    其中dH为Hausdorff度量.则(XFD)是完备的度量空间,并且对于∀λ$\mathbb{R} $,∀uvweXF,度量D有下列性质:

    (P1) D(λuλv)=|λ|D(uv);

    (P2) D(u+wv+w)=D(uv);

    (P3) D(u+vw+e)≤D(uw)+D(ve).

    引理2  存在Banach空间Z,(XFD)可以等距嵌入于Z.

    由此可知: ∀st$ \mathbb{R}$+,∀uvXF,有:

2.   主要结果
  • 本节将在不同的条件下证明方程(1)和(2)的Ulam稳定性,其中fghl表示取值于XF的模糊数值映射.

    定理1  设ε≥0,p$ \mathbb{R}$\{2},模糊数值映射fgh: $B \longrightarrow {X_F} $满足g(0)=h(0)=0,且∀xyB,有

    则当f为偶映射时,存在唯一的模糊数值二次偶映射$ T:B \longrightarrow {X_F} $,满足:

    且对于有理数c,有T(cx)=c2T(x).

      由(3)式及g(0)=h(0)=0易知f(0)=0.分别令(3)式中y=0,x=0,y=x,可得:

    由(5)-(7)式可知

    情形1  p<2.由(8)式知D(2-2f(2x),f(x))≤εxp,由归纳法得

    不失一般性,取m$\mathbb{N}$nm,则由(9)式可得

    由(10)式可知{fn(x)}为完备度量空间XF中的柯西列.由此可定义模糊数值映射$ T:B \longrightarrow {X_F} $,满足

    显然T为偶映射.再由(9)式和度量D的连续性可知

    以及

    于是

    T为二次映射.

    在(12)式中,令x=y

    利用归纳法及(12)式可证: ∀n$ \mathbb{N} $T(nx)=n2T(x).由x的任意性知$ T\left( x \right) = {n^2}T\left( {\frac{x}{n}} \right) $.于是,∀mn$ \mathbb{N} $,有$ T\left( {\frac{n}{m}x} \right) = {n^2}T\left( {\frac{x}{m}} \right) = {\left( {\frac{n}{m}} \right)^2}T\left( x \right) $.由于T为偶映射,所以T(cx)=c2T(x)对于任意的有理数c都成立.

    再由(11),(8),(7)式可得

    情形2  p>2.由(8)式知

    由归纳法知

    与情形1类似,可得二次偶映射$ T:B \longrightarrow {X_F} $满足:

    且对任意有理数c,满足T(cx)=c2T(x).

    最后证明T的唯一性.假设存在两个模糊数值映射$ {T_1}, {T_2}:B \to {X_F} $均满足(4)式,则当p<2时,有

    p>2时,有

    由此可见,对于∀xBT1(x)=T2(x).

    定理2  设ε≥0,s$ \mathbb{R} $\{0},p$ \mathbb{R} $\{2},模糊数值映射fgh: $ B \longrightarrow {X_F} $满足g(0)=h(0)=0,∀xyB

    则当f为偶映射时,存在唯一的二次偶映射$ T:B \longrightarrow {X_F} $满足:

    其中

    且对任意的有理数c,有

      将(13)式中sxx代替,可得

    在(13)式中,分别令y=0,x=0,可得:

    则由(14)式可得

    由定理1可知,当f为偶映射时,存在唯一的二次偶映射$ T:B \longrightarrow {X_F} $满足

    并且对于任意的有理数c,有

    下面证明Tgh的关系.由(15)式和(16)式可知

    定理3  设ε≥0,p$ \mathbb{R} $\{2},模糊数值映射fghl: $ B \longrightarrow {X_F} $满足:

    则当f为偶映射时,存在唯一的二次偶映射$ T:B \longrightarrow {X_F} $满足: ∀xB,有:

    且对任意的有理数c,有

      令

    由(17)式得

    由定理1可知,当f为偶映射时,存在唯一的二次偶映射$ T:B \longrightarrow {X_F} $,满足

    且对任意的有理数c,有

    在(17)式中,分别令y=0,x=0,y=x,可得:

    由(18)式和(19)式可知

    定理4  设ε≥0,s$ \mathbb{R} $\{0},p$ \mathbb{R} $\{2},模糊数值映射fghl: $ B \longrightarrow {X_F} $满足:

    则当f为偶映射时,存在唯一的二次偶映射$ T:B \longrightarrow {X_F} $满足:

    其中

    且对于任意有理数c,有

      令

    由(20)式得: ∀xyB,有

    由定理2得:存在唯一的二次偶映射$ T:B \longrightarrow {X_F} $满足(21)式,且对任意的有理数c,有

    在(20)式中,分别令y=0,x=0,可得:

    于是,由(21),(23)和(24)式得

Reference (16)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return