Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2019 Volume 41 Issue 7
Article Contents

Jiao-feng WANG, Zhen WANG. Oscillatory Behavior of a Third-Order Partial Difference Equation with Three Coefficients[J]. Journal of Southwest University Natural Science Edition, 2019, 41(7): 83-87. doi: 10.13718/j.cnki.xdzk.2019.07.012
Citation: Jiao-feng WANG, Zhen WANG. Oscillatory Behavior of a Third-Order Partial Difference Equation with Three Coefficients[J]. Journal of Southwest University Natural Science Edition, 2019, 41(7): 83-87. doi: 10.13718/j.cnki.xdzk.2019.07.012

Oscillatory Behavior of a Third-Order Partial Difference Equation with Three Coefficients

More Information
  • Received Date: 28/03/2018
    Available Online: 20/07/2019
  • MSC: O241.8

  • In this paper, we study the oscillatory behavior of the third-order partial difference equation with three coefficients pum+3, n+qum, n+3+um+1, n+um, n+1+rum, n=0 p, q, r∈$\mathbb{R}$, m, n∈$\mathbb{N}$ Meanwhile, using the envelope theory, we obtain the necessary and sufficient conditions for oscillation of solutions.
  • 加载中
  • [1] LUO J W.Oscillation of Hyperbolic Partial Differential Equations with Impulses[J].Applied Mathematics and Computation, 2002, 133(2-3):309-318. doi: 10.1016/S0096-3003(01)00217-X

    CrossRef Google Scholar

    [2] BERGER M J, OLIGER J.Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations[J].Journal of Computational Physics, 1984, 53(3):484-512. doi: 10.1016/0021-9991(84)90073-1

    CrossRef Google Scholar

    [3] SMITH B F.Domain Decomposition Methods for Partial Differential Equations[M]//Parallel Numerical Algorithms.Berlin:Springer, 1997.

    Google Scholar

    [4] 王培光, 葛渭高.一类非线性偏泛函微分方程的强迫振动性[J].系统科学与数学, 2000, 20(4):454-461. doi: 10.3969/j.issn.1000-0577.2000.04.010

    CrossRef Google Scholar

    [5] 曾诚, 孙永胜, 杨智勇.连续减速带激励下非线性车辆半车模型振动分析[J].西南大学学报(自然科学版), 2017, 39(2):142-146.

    Google Scholar

    [6] ISLAM M N, CHEN Z.Natural Oscillation Control of Prototype Mechanical Rectifiers[J].IEEE Transactions on Control Systems Technology, 2012, 20(6):1559-1566. doi: 10.1109/TCST.2011.2165718

    CrossRef Google Scholar

    [7] 陈彦, 于徐红.高速公路斜拉桥索力检测数据快速采集与识别方法[J].贵州师范大学学报(自然科学版), 2013, 31(4):92-95. doi: 10.3969/j.issn.1004-5570.2013.04.024

    CrossRef Google Scholar

    [8] YASUDA M, TAKEI K, ARIE T, et al.Oscillation Control of Carbon Nanotube Mechanical Resonator by Electrostatic Interaction Induced Retardation[J].Scientific Reports, 2016, 6(1):22600. doi: 10.1038/srep22600

    CrossRef Google Scholar

    [9] ZHANG B G, AGARWAL R P.The Oscillation and Stability of Delay Partial Difference Equations[J].Comput Math Appl, 2003, 45(6-9):1253-1295. doi: 10.1016/S0898-1221(03)00099-3

    CrossRef Google Scholar

    [10] ZHANG B G, LIU B M.Necessary and Sufficient Conditions for Oscillations of Partial Difference Equations with Continuous Variables[J].Computers & Mathematics With Applications, 1999, 38(5-6):163-167.

    Google Scholar

    [11] LIU S T, ZHANG B G, CHEN G.Asymptotic Behavior and Oscillation of Delay Partial Difference Equations with Positive and Negative Coefficients[J].The Rocky Mountain Journal of Mathematics, 2003, 33(3):953-970. doi: 10.1216/rmjm/1181069937

    CrossRef Google Scholar

    [12] ZHANG B G, ZHOU Y.Qualitative Analysis of Delay Partial Difference Equations[M].New York:Hindawi Publishing Corporation, 2007.

    Google Scholar

    [13] YUAN C H, LIU S T, LIU J.Exact Oscillation Regions for a Partial Difference Equation[J].Advances in Difference Equations, 2015, 2015(1):1-6.

    Google Scholar

    [14] 王娇凤, 马慧莉.一类偏差分方程的振动性[J].数学的实践与认识, 2017, 47(12):308-312.

    Google Scholar

    [15] 王娇凤.几类偏差分方程振动性研究[D].兰州: 西北师范大学, 2017.

    Google Scholar

    [16] 王文杰, 薛蓉, 马慧莉.二阶三参数混合型偏差分方程解的振动性[J].数学的实践与认识, 2018, 48(5):228-234.

    Google Scholar

    [17] CHENG S S, LIN Y Z.Dual Sets of Envelopes and Characteristic Regions of Quasi-Polynomials[M].Singapore:World Scientific, 2009.

    Google Scholar

    [18] 陈朝晖.二元函数凹凸性的判别法及最值探讨[J].高师理科学刊, 2010, 30(5):25-28. doi: 10.3969/j.issn.1007-9831.2010.05.009

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(773) PDF downloads(153) Cited by(0)

Access History

Other Articles By Authors

Oscillatory Behavior of a Third-Order Partial Difference Equation with Three Coefficients

Abstract: In this paper, we study the oscillatory behavior of the third-order partial difference equation with three coefficients pum+3, n+qum, n+3+um+1, n+um, n+1+rum, n=0 p, q, r∈$\mathbb{R}$, m, n∈$\mathbb{N}$ Meanwhile, using the envelope theory, we obtain the necessary and sufficient conditions for oscillation of solutions.

  • 众所周知,偏微分方程的求解是比较困难的,一般计算的方法都是经过差分将其离散化,进而得到相应的偏差分方程,然后通过计算偏差分方程的解来研究偏微分方程的解,因此偏差分方程的解的研究就显得十分重要[1-4].另外,在土木工程、机械控制等实际问题中存在着各种振动现象[5-8],而描述这些现象的数学模型大多是偏微分方程,因此为了研究工程实际问题的振动行为,有必要对偏差分方程的解的振动特性进行研究.然而在研究偏差分方程的振动特性时,受到Laplace反变换计算难度的影响,偏差分方程的振动性研究成果相对较少[9-12].文献[13]借助包络理论研究了偏差分方程

    的振动性,并且给出了方程振动的充要条件.文献[14-16]进一步研究了三类二阶三系数偏差分方程的振动性,同时给出了相应方程解的不同振动条件,本文在文献[14-16]的基础上,考虑一类三阶三系数偏差分方程

    的振动性.

1.   主要结果
  • 为了顺利给出方程(1)的振动条件,首先给出引理1.

    引理1[17]  设ABCF是定义在$\mathbb{R}$n上的n元可微函数,ΓAx+By+Cz=F确定的n参数平面族,ΣΓ的包络,则Ax+By+Cz=F没有实根当且仅当没有Σ的切平面通过点(xyz).相应地,如果设$\widetilde A, \widetilde B, \widetilde F$是定义在$\mathbb{R}$n上的n元可微函数,$\widetilde {\mathit{\Gamma}} $$\widetilde Ax + \widetilde By = \widetilde F$确定的n参数直线族,$\widetilde{\Sigma}$$\widetilde {\mathit{\Gamma}} $的包络,则$\widetilde Ax + \widetilde By = \widetilde F$没有实根当且仅当没有$\widetilde{\Sigma}$的切线通过点(xy).

    定理1  方程(1)是振动的当且仅当p<0,q<0,$r < - \frac{2}{3}\left[{{{\left({ - \frac{1}{{3p}}} \right)}^{\frac{1}{2}}} + {{\left({ - \frac{1}{{3q}}} \right)}^{\frac{1}{2}}}} \right]$.

      由于方程(1)是否振动主要由其特征方程是否有正根来判定,因此首先计算方程(1)的特征方程

    进而在$\mathbb{R}$3内寻找特征方程(2)没有正根的区域.对于任意给定的正实数对(λμ)∈$\mathbb{R}$2,方程(2)都可以在$\mathbb{R}$3中确定一个平面,因此可将f(xyzλμ)=0视为$\mathbb{R}$3上的关于λμ的双参数平面族.

    根据包络的定义,由特征方程(2)所确定的双参数平面族的包络S上点满足

    因此,当x<0,y<0时,有

    由文献[18]知,当x<0,y<0时,z(xy)在(-∞,+∞)×(-∞,+∞)上是上凸函数且z(xy)<0(图 1).

    由上凸函数z(xy)的性质可知,当点(xyz)在包络S的下方区域时,不存在包络S的切平面通过点(xyz),即当p<0,q<0,$r < - \frac{2}{3}\left[{{{\left({ - \frac{1}{3}p} \right)}^{\frac{1}{2}}} + {{\left({ - \frac{1}{3}q} \right)}^{\frac{1}{2}}}} \right]$时,方程(1)是振动的,同时由引理1可知,该条件为充要条件,故方程(1)是振动的当且仅当p<0,q<0,$r < - \frac{2}{3}\left[{{{\left({ - \frac{1}{{3p}}} \right)}^{\frac{1}{2}}} + {{\left({ - \frac{1}{{3q}}} \right)}^{\frac{1}{2}}}} \right]$.

    证毕.

    下面给出退化型偏差分方程(1)的振动条件.令特征方程(2)中的一个参数为零,则有

    特征方程(5)对应的差分方程变为常差分方程

    定理2  方程(6a)是振动的当且仅当p<0,$r < - \frac{2}{3}{\left({ - \frac{1}{{3p}}} \right)^{\frac{1}{2}}}$或者p=0,r≥0;方程(6b)是振动的当且仅当q<0,$r < - \frac{2}{3}{\left({ - \frac{1}{{3q}}} \right)^{\frac{1}{2}}}$>或者q=0,r≥0.

      方程(6a)的特征方程为

    (Ⅰ)当p=0时,特征方程(7)没有正根当且仅当r≥0;

    (Ⅱ)当p≠0时,特征方程(7)的系数(pr)可以看成是$\mathbb{R}$2内的点,只需在$\mathbb{R}$2内寻找使得特征方程(7)没有正根的点所在的区域即可.对于任意的正实数λ$\mathbb{R}$,方程(7)都可以在$\mathbb{R}$2中确定一条直线,因此可将f(xyλ)=0视为$\mathbb{R}$2上的单参数直线族,故由特征方程(7)所确定的单参数直线族的包络C上点满足

    图 2为特征方程(7)所确定的直线族的包络C,且为第三象限中的上凸曲线,当点(pr)在包络C的下方,即当p<0,$r < - \frac{2}{3}{\left({ - \frac{1}{{3p}}} \right)^{\frac{1}{2}}}$时,方程(6a)是振动的,同时由引理1可知,该条件为充要条件,方程(6a)是振动的当且仅当p<0,$r < - \frac{2}{3}{\left({ - \frac{1}{{3p}}} \right)^{\frac{1}{2}}}$或者p=0,r≥0.同理可证方程(6b)是振动的当且仅当q<0,$r < - \frac{2}{3}{\left({ - \frac{1}{{3q}}} \right)^{\frac{1}{2}}}$或者q=0,r≥0.

    证毕.

2.   数值仿真
  • 例1  给定偏差分方程

    由定理1知,当p=-0.03<0,q=-0.27<0,$r = - 30 < - \frac{2}{3}\left[{{{\left({\frac{1}{{3 \cdot 0.03}}} \right)}^{\frac{1}{2}}} + {{\left({\frac{1}{{3 \cdot 0.27}}} \right)}^{\frac{1}{2}}}} \right] = - \frac{{80}}{{27}}$时,定理1条件满足,因此方程(1)振动(图 3).

    例2  给定常差分方程

    由定理2可知,当p=-2.43<0,$r = - 0.9 < - \frac{2}{3}{\left({\frac{1}{{3 \cdot 2.43}}} \right)^{\frac{1}{2}}} = - \frac{{20}}{{81}}$时,定理2条件满足,因此方程(11)振动(图 4).

Figure (4)  Reference (18)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return