Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2019 Volume 41 Issue 7
Article Contents

Rui YUE, Hong-cheng CHEN, Yu-ming HUANG, et al. Cr(Ⅵ) Removal from Water with Polyethyleneimine-Modified Magnetic Chitosan[J]. Journal of Southwest University Natural Science Edition, 2019, 41(7): 125-130. doi: 10.13718/j.cnki.xdzk.2019.07.017
Citation: Rui YUE, Hong-cheng CHEN, Yu-ming HUANG, et al. Cr(Ⅵ) Removal from Water with Polyethyleneimine-Modified Magnetic Chitosan[J]. Journal of Southwest University Natural Science Edition, 2019, 41(7): 125-130. doi: 10.13718/j.cnki.xdzk.2019.07.017

Cr(Ⅵ) Removal from Water with Polyethyleneimine-Modified Magnetic Chitosan

More Information
  • Corresponding authors: Yu-ming HUANG ;  Ping FENG
  • Received Date: 25/07/2018
    Available Online: 20/07/2019
  • MSC: X703

  • Magnetic chitosan (MCTS) nanoparticles were synthesized with a one-pot solvothermal method and then modified by polyethylenimide (PEI) to prepare magnetic PEI-MCTS for removing Cr(Ⅵ). The effects of the initial solution pH, PEI content, adsorbent dosage, ionic strength and adsorption time were systematically studied. The results showed that an acid condition favored Cr (Ⅵ) adsorption. Cr(Ⅵ) adsorption by PEI-MCTS could be described with the Langmuir model and the pseudo-second-order model, and the maximum adsorption capacity was 193. 57 mg/g. In conclusion, the PEI-MCTS composites developed in this study are stable and reusable and, therefore, are recommended for Cr(Ⅵ) removal.
  • 加载中
  • [1] LIU B, HUANG Y M. Polyethyleneimine Modified Eggshell Membrane as a Novel Biosorbent for Adsorption and Detoxification of Cr(Ⅵ) from Water[J]. Journal of Materials Chemistry, 2011, 21(43):17413-17418. doi: 10.1039/c1jm12329g

    CrossRef Google Scholar

    [2] CAVACO S A, FERNANDES S, QUINA M M, et al. Removal of Chromium from Electroplating Industry Effluents by Ion Exchange Resins[J]. Journal of Hazardous Materials, 2007, 144(3):634-638. doi: 10.1016/j.jhazmat.2007.01.087

    CrossRef Google Scholar

    [3] HAN C, JIAO Y N, WU Q Q, et al. Kinetics and Mechanism of Hexavalent Chromium Removal by Basic Oxygen Furnace Slag[J]. Journal of Environmental Sciences, 2016, 46:63-71. doi: 10.1016/j.jes.2015.09.024

    CrossRef Google Scholar

    [4] BANKAR A V, KUMAR A R, ZINJARDE S S. Removal of Chromium (Ⅵ) Ions from Aqueous Solution by Adsorption onto Two Marine Isolates of Yarrowia Lipolytica[J]. Journal of Hazardous Materials, 2009, 170(1):487-494. doi: 10.1016/j.jhazmat.2009.04.070

    CrossRef Google Scholar

    [5] CHEN D M, LI W, WU Y R, et al. Preparation and Characterization of Chitosan/Montmorillonite Magnetic Microspheres and Its Application for the Removal of Cr (Ⅵ)[J]. Chemical Engineering Journal, 2013, 221:8-15. doi: 10.1016/j.cej.2013.01.089

    CrossRef Google Scholar

    [6] SUN X F, JING Z X, WANG H H, et al. Removal of Low Concentration Cr(Ⅵ) from Aqueous Solution by Modified Wheat Straw. Journal of Applied Polymer Science[J]. 2013, 129(3): 1555-1562.

    Google Scholar

    [7] LIU X W, HU Q Y, FANG Z, et al. Magnetic Chitosan Nanocomposites:a Useful Recyclable Tool for Heavy Metal Ion Removal[J]. Langmuir, 2009, 25(1):3-8. doi: 10.1021/la802754t

    CrossRef Google Scholar

    [8] REDDY D H K, LEE S M. Application of Magnetic Chitosan Composites for the Removal Of Toxic Metal and Dyes from Aqueous Solutions[J]. Advances in Colloid and Interface Science, 2013, 201-202:68-93. doi: 10.1016/j.cis.2013.10.002

    CrossRef Google Scholar

    [9] HU X J, WANG J S, LIU Y G, et al. Adsorption of Chromium(Ⅵ) by Ethylenediamine-Modified Cross-Linked Magnetic Chitosan Resin:Isotherms, Kinetics and Thermodynamics[J]. Journal of Hazardous Materials, 2011, 185(1):306-314. doi: 10.1016/j.jhazmat.2010.09.034

    CrossRef Google Scholar

    [10] 王文凤.磁性壳聚糖小球的简易制备及其除铜性能的研究[D].南京: 南京大学, 2014.http://cdmd.cnki.com.cn/Article/CDMD-10284-1016181329.htm

    Google Scholar

    [11] ZHANG L F, XIA W, LIU X, et al. Synthesis of Titanium Cross-Linked Chitosan Composite for Efficient Adsorption and Detoxification of Hexavalent Chromium from Water[J]. Journal of Materials Chemistry A. 2015, 3(1):331-340. doi: 10.1039/C4TA05194G

    CrossRef Google Scholar

    [12] SHI Z L, NEOH K G, KANG E T, et al. Surface Functionalization of Titanium with Carboxymethyl Chitosan and Immobilized Bone Morphogenetic Protein-2 for Enhanced Osseointegration[J]. Biomacromolecules, 2009, 10(6):1603-1611. doi: 10.1021/bm900203w

    CrossRef Google Scholar

    [13] TIAN Y, YU B B, LI X, et al. Facile Solvothermal Synthesis of Monodisperse Fe3O4 Nanocrystals with Precise Size Control of One Nanometre as Potential MRI Contrast Agents[J]. Journal of Materials Chemistry, 2011, 21(8):2476-2481. doi: 10.1039/c0jm02913k

    CrossRef Google Scholar

    [14] SHI L N, LIN Y M, ZHANG X, et al. Synthesis, Characterization and Kinetics of Bentonite Supported nZⅥ for the Removal of Cr(Ⅵ) from Aqueous Solution[J]. Chemical Engineering Journal, 2011, 171(2):612-617.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(2511) PDF downloads(176) Cited by(0)

Access History

Other Articles By Authors

Cr(Ⅵ) Removal from Water with Polyethyleneimine-Modified Magnetic Chitosan

    Corresponding author: Yu-ming HUANG ; 
    Corresponding authors: Ping FENG

Abstract: Magnetic chitosan (MCTS) nanoparticles were synthesized with a one-pot solvothermal method and then modified by polyethylenimide (PEI) to prepare magnetic PEI-MCTS for removing Cr(Ⅵ). The effects of the initial solution pH, PEI content, adsorbent dosage, ionic strength and adsorption time were systematically studied. The results showed that an acid condition favored Cr (Ⅵ) adsorption. Cr(Ⅵ) adsorption by PEI-MCTS could be described with the Langmuir model and the pseudo-second-order model, and the maximum adsorption capacity was 193. 57 mg/g. In conclusion, the PEI-MCTS composites developed in this study are stable and reusable and, therefore, are recommended for Cr(Ⅵ) removal.

  • 铬及其化合物是重要的化工原料,广泛用于制革、电镀和颜料生产等.由于其具有致癌、致突变性质,这些工业排放的含铬Cr(Ⅵ)废液对环境和人类健康产生了严重威胁.为此,建立了多种技术方法用于去除Cr(Ⅵ),如化学还原、离子交换和吸附法[1-3]等.吸附法具有简单、易操作、成本低等优点,受到广泛关注.目前,基于微生物细胞[4]、壳聚糖[5]和农业副产物[6]的生物吸附剂已用于Cr(Ⅵ)去除,具有成本低、无毒和来源丰富等优点.壳聚糖(CTS)是一种很有潜力的生物吸附剂,因为CTS易生物降解,而且其分子链中含有丰富的功能基团(—NH2和—OH)等[7].然而,未修饰的CTS难以从废水中分离出来,因此,多种磁性CTS吸附剂应运而生,已用于去除Cr(Ⅵ)[7-8].然而在多数情况下,这些MCTS合成过程复杂,至少包括三步:首先合成磁性Fe3O4纳米颗粒,其次对其表面进行修饰,最后再将CTS嫁接在其表面.而且,已经报道的MCTS对Cr(Ⅵ)的吸附容量有限,如Hu等[9]用乙二胺修饰的交联CTS对Cr(Ⅵ)的最大吸附容量仅为51.81 mg/g,为改善其吸附容量,王文凤等通过一步热溶剂法简单快速地合成了200 nm左右的MCTS微球,该微球对Cu(Ⅱ)吸附容量可达129.6 mg/g,而且吸附在10 min内达到平衡[10].聚乙烯亚胺(PEI)是具有支链结构的阳离子聚电解质,其分子链上富含大量氨基,在较宽的pH值范围内都可以质子化带正电荷,可与带负电荷的阴离子通过静电作用实现去除.本研究先通过一步热溶剂法合成纳米颗粒MCTS,再通过交联法将PEI修饰在其表面,从而进一步提高吸附剂对Cr(Ⅵ)的吸附能力.

1.   实验方法与材料
  • 所有化学试剂的使用都没有经过进一步的纯化.脱乙酰度为91.1%的CTS(平均分子量为3.0×105 g/mol)购自南通兴成生物制品厂.聚乙烯亚胺(PEI)(Mw,18000)购自上海Sigma-Aldrich有限公司. NaAc购买于科龙化学试剂有限公司.其他试剂,如乙二醇、丙酮、乙醇等均购自重庆化学试剂有限公司. UV-2450型紫外-可见分光光度计(岛津公司,苏州);ZHWY-2102C型恒温振荡培养箱(上海智城仪器制造有限公司,上海).

  • 将2 g FeCl3·6H2O溶于60 mL乙二醇中,加入4 g NaAc后,磁力搅拌使其完全溶解后,再加入CTS 4 g,并搅拌12 h,之后将混合溶液转移至反应釜中加热到200 ℃,并在该温度下反应8 h后冷却至室温得到黑色材料,依次用去离子水和乙醇洗3遍,分离后的材料在60 ℃下干燥即得MCTS.为制备PEI-MCTS,将0.3 g MCTS加入到50 mL PEI溶液中,超声20 min后,在室温和300 r/min机械搅拌条件下逐滴加入25 mL体积分数为5%的戊二醛水溶液,继续搅拌30 min后,用超纯水冲洗材料直至上清液清澈,固体材料在50 ℃下干燥,即得PEI-MCTS.

  • 在一系列100 mL锥形瓶中,分别加入50 mL Cr(Ⅵ)溶液和5 mg吸附剂,置于摇床中以180 r/min转速摇一段吋间,吸附完成后,磁性分离,取上清液测定Cr(Ⅵ)的质量浓度.每一组实验均设置平行样,所有结果取两个平行样的平均值. Cr(Vl)溶液初始pH值用稀NaOH溶液或稀HCl溶液调节.上清液中Cr(Ⅵ)质量浓度采用二苯碳酰二肼分光光度法测定.计算吸附容量:

    式中,qe为吸附容量(mg/g);CoCe分别为Cr(Ⅵ)的初始质量浓度和平衡质量浓度(mg/L);V(mL)是Cr(Ⅵ)溶液的体积;m(mg)是PEI-MCTS的质量(g).

2.   结果与分析
  • 图 1(a)是MCTS、PEI-MCTS及其吸附Cr(Ⅵ)后的红外光谱图,可见MCTS和PEI-MCTS中呈现CTS的主要特征峰:3430 cm-1(—OH,—NH2的伸缩振动峰)[11]、2 878 cm-1(—CH伸缩振动)、1 657 cm-1(—NH2弯曲振动)、1 379 cm-1(—CH弯曲振动)、1 081 cm-1(C3处C—O伸缩振动) [12],而550 cm-1处为Fe3O4中Fe—O振动峰[13],说明MCTS合成成功.吸附Cr(Ⅵ)后,PEI-MCTS的—NH2伸缩振动峰偏移至3 408 cm-1,表明氨基参与了Cr(Ⅵ)的吸附.另外,在777 cm-1和934 cm-1处出现了新峰,分别对应Cr—O和Cr = O的吸收峰[14],进一步表明Cr(Ⅵ)成功吸附在PEI-MCTS上.

    从热重曲线可以看出(图 1(b)),温度100 ℃下,MCTS,及PEI-MCTS的质量分别下降了6%和12%,这是材料中水蒸发的原因.当温度从100 ℃升高到250 ℃时,材料无明显质量损失,继续升高温度至600 ℃时,材料质量损失明显,这是由于CTS和PEI热解所致,表明PEI成功修饰到CTS上. XRD结果表明(图 1(c)),MCTS及PEI-MCTS呈现Fe3O4的(220)、(311)、(400),(422)、(511)和(440)面的衍射峰,但PEI-MCTS的特征峰比MCTS的特征峰弱,这是由于引入PEI的缘故.另外,在20°处有一个明显的衍射峰,其来自CTS. 图 1(d)为MCTS的TEM图,可以看出,MCTS呈球形,颗粒粒径大小在200 nm左右.从图 2可知,随着pH值升高,PEI-MCTS表面的电位逐渐下降,在酸性条件下材料有较高的zeta电位.这是因为酸性条件下,材料表面的氨基会被质子化从而得到较高的电位.

  • 实验研究了初始pH值对Cr(Ⅵ)吸附的影响,从图 2可见,酸性条件下材料对Cr(Ⅵ)的去除能力明显优于碱性条件.这是因为在酸性条件下,材料表面的—NH2会被质子化形成带正电荷的—NH3+,其会与阴离子Cr(Ⅵ)(当pH值低于6.8时,HCrO4-是Cr(Ⅵ)的主要存在形式;当pH值高于6.8时,HCrO4-会完全转化为CrO42-)发生静电吸附作用,实现对Cr(Ⅵ)的去除.

  • 实验研究了0,5,10,20,30,40及50 g/L PEI质量浓度的影响,结果表明,得到的PEI-MCTS对Cr(Ⅵ)的吸附容量分别为115.45,177.28,190.91,192.45,190.21,191.78及190.34 mg/g,可见,Cr(Ⅵ)的吸附容量随PEI质量浓度的增加而增加,但PEI质量浓度超过20 g/L时,吸附容量变化较小.实验选择20 g/L PEI进行MCTS的功能化.考察了吸附剂用量的影响(图 3),Cr(Ⅵ)吸附容量随吸附剂用量增加而降低,为确保材料对Cr(Ⅵ)的吸附容量,实验选择其剂量为5 mg/L.

  • 图 4所示为吸附时间对PEI-MCTS去除Cr(Ⅵ)的影响,可见,PEI-MCTS吸附Cr(Ⅵ)在3 h之前随时间增加,吸附容量显著增加,超过3 h后吸附达到平衡,实验选择吸附时间为3 h.用吸附准一级和准二级动力学模型对实验数据进行拟合:

    其中:qeqt分别代表平衡时的吸附容量和时间为t时的吸附容量. k1(min-1)和k2(g (mg·min)-1)分别是准一级和准二级速率常数.拟合结果表明,准二级动力学模型得到的qe为192.08 mg/g,非常接近实验值190.54 mg/g,而且r2>0.99,表明吸附更符合准二级动力学模型,说明PEI-MCTS吸附Cr(Ⅵ)一个化学吸附过程.

  • 吸附等温线列于图 5,可见,Cr(Ⅵ)吸附容量在其初始质量浓度为70 mg/L达到平衡.分别用Langmuir(方程3)和Freundlich(方程4)对实验数据进行拟合:

    式中:Ce(mg/L)代表吸附平衡时Cr(Ⅵ)质量浓度,qe(mg/g)是吸附平衡时Cr(Ⅵ)的吸附容量,b(L/mg)是和吸附能量相关的Langmuir常数,qmax(mg/g)表示是最大吸附容量. Kn表示Freundlich吸附常数. Langmuir模型(r2=0.995 8)拟合效果要好于Freundlich模型(r2=0.876 4),这说明该吸附是一个单分子吸附过程,对Cr(Ⅵ)的最大吸附容量为193.57 mg/g.

  • 实验研究了不同浓度NaCl (0~1 mol/L)对PEI-MCTS吸附Cr(Ⅵ)的影响.结果见图 6,可见,NaCl对Cr(Ⅵ)的吸附有非常显著的影响.在考察的浓度范围内,随着NaCl浓度升高吸附容量迅速下降,例如当NaCl浓度从0 mol/L升到0.1 mol/L时,吸附容量从194.72 mg/g降到135.80 mg/g.这可能是因为NaCl中的Cl-与Cr(Ⅵ)产生了竞争吸附.

  • 用0.5 mol/L NaOH作为洗脱剂,对吸附Cr(Ⅵ)后的PEI-MCTS材料进行再生后用于Cr(Ⅵ)的吸附,以考察其重复利用性能,结果见图 7.可见,材料在重复使用5次之后,对Cr(Ⅵ)的吸附容量是第一次吸附容量的95%,显示了材料良好的重复利用性能.

Figure (7)  Reference (14)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return