Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2021 Volume 43 Issue 8
Article Contents

LI Jun, ZHOU Tao, WANG Chong-min, et al. Identification and Expression Analysis of NF-Y Gene Family in Pseudostellaria heterophylla[J]. Journal of Southwest University Natural Science Edition, 2021, 43(8): 28-35. doi: 10.13718/j.cnki.xdzk.2021.08.004
Citation: LI Jun, ZHOU Tao, WANG Chong-min, et al. Identification and Expression Analysis of NF-Y Gene Family in Pseudostellaria heterophylla[J]. Journal of Southwest University Natural Science Edition, 2021, 43(8): 28-35. doi: 10.13718/j.cnki.xdzk.2021.08.004

Identification and Expression Analysis of NF-Y Gene Family in Pseudostellaria heterophylla

More Information
  • Received Date: 06/06/2020
    Available Online: 20/08/2021
  • MSC: S567; R282

  • Nuclear factor Y (NF-Y) is an important transcription factor in eukaryotes. In this study, bioinformatics was used to identify NF-Y protein family members from the transcriptome database of P. heterophylla, and the transcriptome data were used to analyze the expression level of each gene in different tissues. Their response to soil water stress and sucrose was also studied. Three subfamilies of NF-Y protein family of P. heterophylla were identified by searching three transcriptome databases, including 9 members of PhNF-YA, 10 members of PhNF-YB and 5 members of PhNF-YC. It was found that 9 members, such as PhNF-YA4, were highly expressed in leaves. High expression level of PhNF-YA3 and PhNF-YB3, PhNF-YB8 were observed in bark and xylem of tuberous root, respectively. The expression of 11 members in the tuberous root of P. heterophylla was significantly up-regulated under drought stress. Two members had up-regulated expression in microtuberous root along with the increase of soil water content. Most genes could respond to content change of sucrose. These results suggest that some factors can affect the expression level of NF-Y protein in organs, change the interaction between different NF-Y proteins in plants, and regulate the morphogenesis of organs and response to stresses.
  • 加载中
  • [1] MANTOVANI R. The Molecular Biology of the CCAAT-Binding Factor NF-Y[J]. Gene, 1999, 239(1): 15-27. doi: 10.1016/S0378-1119(99)00368-6

    CrossRef Google Scholar

    [2] KAHLE J, BAAKE M, DOENECKE D, et al. Subunits of the Heterotrimeric Transcription Factor NF-Y are Imported into the Nucleus by Distinct Pathways Involving Importin Beta and Importin 13[J]. Molecular and Cellular Biology, 2005, 25(13): 5339-5354. doi: 10.1128/MCB.25.13.5339-5354.2005

    CrossRef Google Scholar

    [3] MACH J. CONSTANS Companion: CO Binds the NF-YB/NF-YC Dimer and Confers Sequence-Specific DNA Binding[J]. Plant Cell, 2017, 29(6): 1183. doi: 10.1105/tpc.17.00465

    CrossRef Google Scholar

    [4] LALOUM T, DE MITA S, GAMAS P, et al. CCAAT-Box Binding Transcription Factors in Plants: Y so Many[J]. Trends in Plant Science, 2013, 18(3): 157-166. doi: 10.1016/j.tplants.2012.07.004

    CrossRef Google Scholar

    [5] YANG J, XIE Z, GLOVER B J. Asymmetric Evolution of Duplicate Genes Encoding the CCAAT-Binding Factor NF-Y in Plant Genomes[J]. New Phytol, 2005, 165(2): 623-631. doi: 10.1111/j.1469-8137.2004.01260.x

    CrossRef Google Scholar

    [6] 丁慧霞, 刘凤, 张利娟, 等. 植物中NF-Y转录因子的结构和功能研究进展[J]. 分子植物育种, 2017, 15(5): 1691-1701.

    Google Scholar

    [7] 李敏, 于太飞, 徐兆师, 等. 大豆转录因子基因GmNF-YCa可提高转基因拟南芥渗透胁迫的耐性[J]. 作物学报, 2017, 43(8): 1161-1169.

    Google Scholar

    [8] 方广宁, 胡利芹, 王二辉, 等. 谷子转录因子SiNF-YA6的过表达提高转基因植株对低氮胁迫的抗性[J]. 中国农业科学, 2015, 48(20): 3989-3997. doi: 10.3864/j.issn.0578-1752.2015.20.001

    CrossRef Google Scholar

    [9] 刘训红, 陈彬, 王玉玺. 太子参多糖抗应激和免疫增强作用的实验研究[J]. 江苏中医, 2000, 21(10): 51-52.

    Google Scholar

    [10] 黄冬寿, 王树贵. 福建"柘荣太子参"栽培环境的道地性研究[J]. 中国野生植物资源, 2010, 29(2): 12-14. doi: 10.3969/j.issn.1006-9690.2010.02.004

    CrossRef Google Scholar

    [11] LI J, ZHEN W, LONG D, et al. De Novo Sequencing and Assembly Analysis of the Pseudostellaria Heterophylla Transcriptome[J]. PLoS One, 2016, 11(10): e0164235. doi: 10.1371/journal.pone.0164235

    CrossRef Google Scholar

    [12] 路丙社, 白志英, 崔建州, 等. 干旱胁迫对阿月浑子叶片光合作用的影响[J]. 河北农业大学学报, 2004, 27(1): 43-47. doi: 10.3969/j.issn.1000-1573.2004.01.011

    CrossRef Google Scholar

    [13] 洪晓云. 太子参离体快繁及多倍体诱导的研究[D]. 福州: 福建农林大学, 2013.

    Google Scholar

    [14] WARPEHA KM, UPADHYAY S, YEH J, et al. The GCR1, GPA1, PRN1, NF-Y signal chain mediates both blue light and abscisic acid responses in Arabidopsis[J]. Plant Physiol, 2007, 143(4): 1590-1600. doi: 10.1104/pp.106.089904

    CrossRef Google Scholar

    [15] STEPHENSONT J, MCINTYRE C L, COLLET C, et al. TaNF-YB3 is Involved in the Regulation of Photosynthesis Genes in Triticum aestivum[J]. Functional & Integrative Genomics, 2011, 11(2): 327-340.

    Google Scholar

    [16] MIYOSHI K, ITO Y, SERIZAWA A, et al. OsHAP3 Genes Regulate Chloroplast Biogenesis in Rice[J]. Plant J, 2003, 36(4): 532-540. doi: 10.1046/j.1365-313X.2003.01897.x

    CrossRef Google Scholar

    [17] MU J, TAN H, HONG S, et al. Arabidopsis Transcription Factor Genes NF-YA1, 5, 6, and 9 Play Redundant Roles in Male Gametogenesis, Embryogenesis, and Seed Development[J]. Molecular Plant, 2013, 6(1): 188-201. doi: 10.1093/mp/sss061

    CrossRef Google Scholar

    [18] FORNARI M, CALVENZANI V, MASIERO S, et al. The Arabidopsis NF-YA3 and NF-YA8 Genes are Functionally Redundant and are Required in Early Embryogenesis[J]. PLoS One, 2013, 8(11): e82043. doi: 10.1371/journal.pone.0082043

    CrossRef Google Scholar

    [19] STEPHENSONT J, MCINTYRE C L, COLLET C, et al. Genome-Wide Identification and Expression Analysis of the NF-Y Family of Transcription Factors in Triticum aestivum[J]. Plant Molecular Biology, 2007, 65(1-2): 77-92. doi: 10.1007/s11103-007-9200-9

    CrossRef Google Scholar

    [20] HACKENBERG D, KEETMAN U, GRIMM B. HomologousNF-YC2 Subunit from Arabidopsis and Tobacco is Activated by Photooxidative Stress and Induces Flowering[J]. International Journal of Molecular Sciences, 2012, 13(3): 3458-3477. doi: 10.3390/ijms13033458

    CrossRef Google Scholar

    [21] NELSOND E, REPETTI P P, ADAMS T R, et al. Plant Nuclear Factor Y (NF-Y) B Subunits Confer Drought Tolerance and Lead to Improved Corn Yields on Water-Limited Acres[J]. PNAS, 2007, 104(42): 16450-16455. doi: 10.1073/pnas.0707193104

    CrossRef Google Scholar

    [22] LIW X, OONO Y, ZHU J, et al. The Arabidopsis NFYA5 Transcription Factor is Regulated Transcriptionally and Posttranscriptionally to Promote Drought Resistance[J]. The Plant Cell, 2008, 20(8): 2238-2251. doi: 10.1105/tpc.108.059444

    CrossRef Google Scholar

    [23] 王玉华, 杨清, 陈敏. 植物糖感知和糖信号传导[J]. 植物学通报, 2004, 21(3): 273-279. doi: 10.3969/j.issn.1674-3466.2004.03.003

    CrossRef Google Scholar

    [24] 刘奕清, 刘长春, 徐安辉. 蔗糖对黄金合果芋试管苗生长及生理的影响[J]. 西南大学学报(自然科学版), 2007, 29(6): 143-146.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)  /  Tables(1)

Article Metrics

Article views(1767) PDF downloads(785) Cited by(0)

Access History

Other Articles By Authors

Identification and Expression Analysis of NF-Y Gene Family in Pseudostellaria heterophylla

Abstract: Nuclear factor Y (NF-Y) is an important transcription factor in eukaryotes. In this study, bioinformatics was used to identify NF-Y protein family members from the transcriptome database of P. heterophylla, and the transcriptome data were used to analyze the expression level of each gene in different tissues. Their response to soil water stress and sucrose was also studied. Three subfamilies of NF-Y protein family of P. heterophylla were identified by searching three transcriptome databases, including 9 members of PhNF-YA, 10 members of PhNF-YB and 5 members of PhNF-YC. It was found that 9 members, such as PhNF-YA4, were highly expressed in leaves. High expression level of PhNF-YA3 and PhNF-YB3, PhNF-YB8 were observed in bark and xylem of tuberous root, respectively. The expression of 11 members in the tuberous root of P. heterophylla was significantly up-regulated under drought stress. Two members had up-regulated expression in microtuberous root along with the increase of soil water content. Most genes could respond to content change of sucrose. These results suggest that some factors can affect the expression level of NF-Y protein in organs, change the interaction between different NF-Y proteins in plants, and regulate the morphogenesis of organs and response to stresses.

  • 核因子Y(nuclear factor Y,NF-Y),又称CBF或亚铁血红素激活蛋白HAP,主要由NF-YA,NF-YB及NF-YC 3个亚家族组成[1]. NF-Y蛋白家族的不同成员可通过不同途径进入细胞核,其中NF-YA是由Importin β介导输入核中,而含有HFM亚基的NF-YB和NF-YC作为异二聚体复合物则由Importin 13介导进入细胞核[2]. 3个亚家族可以单独调控基因表达,也可形成NF-YB/NF-YC CONSTANS或NF-Y复合体,进一步结合CCAAT元件参与基因表达的调控[3].

    在哺乳动物及酵母体内,NF-Y的3个亚基均由单基因编码[4],但植物中每个亚基均由基因家族编码[5],提供了更多的NF-YA/NF-YB/NF-YC三聚体组合,增加了核因子Y功能的复杂性,参与了在种子萌发、胚胎发育、开花过程以及植物对氮、磷、脱落酸(ABA)以及盐分胁迫等的响应过程[6]. 研究表明大豆GmNF-YCa在蔗糖和甘露醇诱导后上调表达,过表达可显著改善甘露醇和蔗糖胁迫下拟南芥种子的发芽率、根长和侧根伸长明显等[7]. 谷子SiNF-YA6主要在根部表达,同时受低氮、干旱、高盐和ABA等胁迫的诱导表达,该基因的过表达显著提高了拟南芥对低氮胁迫的耐受性[8]. 由此可见,NF-Y蛋白家族的不同成员不仅参与了植物多种生长发育进程,且在植物抵御逆境胁迫等方面具有重要作用.

    太子参为传统中药,系石竹科植物孩儿参Pseudostellaria heterophylla (Miq.) Paxex Pax et Hoffm的干燥块根,含有多糖类、皂苷类、磷脂类、环肽类等活性成分,具有增强免疫力、降血糖、抗疲劳等多种功效[9]. 随着近年来太子参需求量的逐年上升,逐步转向人工种植,主要分布于温暖湿润的气候环境中[10]. 高温、干旱等逆境容易引起太子参生长发育受阻,从而导致减产、病害等问题. 因此,研究NF-Y基因家族的表达模式及对干旱胁迫的响应,对于深入理解其在太子参生长发育过程中的功能和作用,解析NF-Y蛋白在植物抵抗逆境胁迫中的作用机制具有重要意义.

1.   材料
  • 供试材料为贵州施秉常用种,转录组数据由上海美吉生物医药科技有限公司测序完成. 数据库1:采用课题组前期构建的太子参转录组数据库(叶、茎、根表皮、根木质部)[11];数据库2:参照路丙社等[12]的方法,设置30%,44%,58%,72%,86%及100%的土壤水分梯度,相对含水量=土壤含水量/田间持水量×100%,取块根进行转录组测序,de Novo组装;数据库3:采用0.2 mg/L NAA(萘乙酸)诱导组培苗生根[13],然后转入MS+45 g/L蔗糖,MS+60 g/L蔗糖及MS+75 g/L蔗糖的培养基中培养,取块根进行转录组测序,de Novo组装.

2.   方法
  • 从NCBI中下载甜菜(Beta vulgaris L.)、拟南芥(Arabidopsis thaliana)、水稻(Oryza sativa L.)等的NF-Y蛋白家族成员. 通过BlastP分别比对3个数据库,从中鉴定太子参NF-Y家族同源序列,期望值设为小于0.001,结合数据库原有的注释结果,剔除注释错误的序列,将3个数据库中鉴定的NF-Y蛋白序列统一编号.

  • 采用muscle 3.8软件(http://www.drive5.com/muscle/)对太子参及甜菜、拟南芥及水稻进行多序列比对,分析结果用MEGA X(https://www.megasoftware.net/)分析,采用邻接法(neighbor-joining method)构建NF-Y的系统进化树,检验参数Booistrap重复1 000次. 利用MEME在线程序(http://meme-suite.org/)对NF-Y蛋白家族的保守基序进行分析,预测太子参NF-Y蛋白家族的蛋白质保守基序(Motif),参数设置为默认值,并用WebLogo软件(http://weblogo.berkeley.edu/logo.cgi)展示保守基序.

  • 采用RSEM软件(http://deweylab.biostat.wisc.edu/rsem/)进行基因表达分析,采用RPKM值(reads per kb permillion reads)表示基因的相对表达水平,采用Cluster 3.0软件对NF-Y基因的表达水平进行标准化,最后采用Heatmap图展示基因的表达.

  • 采用美吉生物云平台(https://cloud.majorbio.com/)中的STRING数据库(http://string-db.org/)对NF-Y蛋白互作进行分析. 参考拟南芥的蛋白互作关系,构建太子参NF-Y蛋白的互作关系网络. 采用confidence score值评价互作关系的可信度,默认值0.4,值越大代表互作关系越可靠.

3.   结果
  • 采用拟南芥、水稻等模式植物的NF-Y蛋白检索3个太子参转录组数据库,结合注释信息及手工分析,共鉴定出24个NF-Y基因(表 1),分别归入3个亚家族,包括9个NF-YA,10个NF-YB及5个NF-YC. 其中数据库1中获得9个NF-YA,6个NF-YB及4个NF-YC;数据库2中获得8个NF-YA,8个NF-YB及4个NF-YC;数据库3中获得8个NF-YA,7个NF-YB及4个NF-YC. PhNF-YA8仅在数据库1中检索到,PhNF-YB5,PhNF-YB6,PhNF-YB7,PhNF-YB9及PhNF-YC5未在数据库1中检索到,暗示这些基因可能是诱导型基因.

  • 为了推测24个太子参NF-Y蛋白的功能,分别构建了NF-YA,NF-YB及NF-YC氨基酸序列的系统进化树(图 1). 太子参的9个NF-YA蛋白分别归入3个类群,其中PhNF-YA2,PhNF-YA3,PhNF-YA7,PhNF-YA9与AtNF-YA3,AtNF-YA5,AtNF-YA6,AtNF-YA8归为第1类群,PhNF-YA1,PhNF-YA4,PhNF-YA5,PhNF-YA8与AtNF-YA1,AtNF-YA9归为第2类群,PhNF-YA6与AtNF-YA2,AtNF-YA10归入第3类群.

    太子参的10个NF-YB蛋白分别归入4个类群,其中PhNF-YB2,PhNF-YB3,PhNF-YB10与AtNF-YB1,AtNF-YB2等6个拟南芥NF-YB蛋白归入第1类群,PhNF-YB1,PhNF-YB4,PhNF-YB5与AtNF-YB4,AtNF-YB5归入第2类群,PhNF-YB6及PhNF-YB9归入第3类群,PhNF-YB7,PhNF-YB8与AtNF-YB6,AtNF-YB9归入第4类群. 太子参的5个PhNF-YC蛋白归入同一个类群.

    为了解太子参NF-Y蛋白的序列特点,分析了太子参NF-Y蛋白的保守基序(图 2),发现PhNF-YA,PhNF-YB及PhNF-YC亚家族中均具有一段高度保守的序列,暗示这些序列与太子参NF-Y蛋白的功能密切相关.

  • 为了进一步阐明太子参NF-Y蛋白的功能,分析了这些基因在叶、茎、块根皮部及块根木质部中的表达模式(图 3a),结果显示9个PhNF-YA基因中PhNF-YA4,PhNF-YA5,PhNF-YA7,PhNF-YA9仅在叶中有较高表达,PhNF-YA2,PhNF-YA6在叶及茎中均有较高表达,PhNF-YA1在块根木质部有较高表达,PhNF-YA3在块根皮部有较高表达. 6个PhNF-YB基因中PhNF-YB1和PhNF-YB4在块根皮部及茎中有较高表达,PhNF-YB10仅在叶中有较高表达,PhNF-YB3在块根木质部中有较高表达,PhNF-YB8在块根木质部及叶中有较高表达. 4个PhNF-YC基因中PhNF-YC2在叶中有较高表达,其余基因表达量较低. 19个基因的蛋白互作关系分析结果显示(图 3b),PhNF-YA4及PhNF-YC2等9个PhNF-Y蛋白的互作关系在太子参叶片的生长发育过程中具有重要作用.

  • 为了研究太子参NF-Y蛋白对水分胁迫的响应机制,分析了不同土壤水分胁迫下块根中NF-Y基因的表达模式(图 4a),结果显示8个PhNF-YA基因中PhNF-YA1,PhNF-YA4,PhNF-YA5,PhNF-YA7,PhNF-YA9在干旱胁迫下(30%)有较高表达,PhNF-YA1,PhNF-YA2,PhNF-YA3在低度干旱条件下(58%)有较高表达,PhNF-YA6随着土壤水分含量的上升表现出上调的趋势. 10个PhNF-YB基因中PhNF-YB2,PhNF-YB3及PhNF-YB8在干旱胁迫下(30%)有较高表达,PhNF-YB10在适度干旱胁迫下(44%)有较高表达,PhNF-YB1在低度干旱条件下(58%)有较高表达. 5个PhNF-YC基因中PhNF-YC1,PhNF-YC3,PhNF-YC4在干旱胁迫下(30%)有较高表达,PhNF-YC2与土壤水分的增加趋势基本一致,PhNF-YC5仅在涝滞环境下(100%)有较高表达. 23个PhNF-Y蛋白的互作关系表明(图 4b),PhNF-YA1,PhNF-YB4,PhNF-YC3及PhNF-YC4等11个PhNF-Y蛋白积极响应土壤水分的胁迫,调控植物的生长发育.

  • 为了研究太子参NF-Y蛋白对蔗糖诱导的响应机制,利用组培苗观察不同蔗糖浓度培养条件下太子参根部NF-Y蛋白的表达模式(图 5a),结果显示,随着培养基中蔗糖浓度的升高,3个PhNF-YA基因的表达呈现逐渐升高的趋势,7个PhNF-YB基因中PhNF-YB5的表达量随蔗糖浓度的升高而升高,PhNF-YB1,PhNF-YB2的表达呈先上升后下降的趋势,PhNF-YB3,PhNF-YB4,PhNF-YB8,PhNF-YB10的表达呈先下降后上升的趋势. 4个PhNF-YC基因中PhNF-YC3及PhNF-YC4基因的表达受高浓度蔗糖诱导,PhNF-YC1在高浓度蔗糖条件下表达受到抑制. 19个PhNF-Y蛋白的互作关系表明(图 5b),PhNF-YA1,PhNF-YB4,PhNF-YC2等10个PhNF-Y蛋白积极响应蔗糖胁迫,协同调控植物的生长发育.

4.   讨论
  • 已有证据表明NF-Y蛋白在叶绿体形成及光合作用中具有重要作用. 拟南芥AtNF-YA5,AtNF-YB9和AtNF-YC9形成的复合体可与GCR1,GPA1和Pirin1组成信号传递链,参与调控植株中叶绿素a/b结合蛋白基因的表达[14]. 过量表达小麦TaNF-YB3后显著提高叶绿素含量、光合速率及早期生长率[15]. 水稻Os-NF-YB2/3/4可影响多个核酮糖-1,5-二磷酸羧化酶/氧合酶小亚基和叶绿素a/b结合蛋白基因的表达[16]. 本研究发现太子参PhNF-YA4,PhNF-YA5等6个基因,PhNF-YB8,PhNF-YB10及PhNF-YC2在叶中高量表达,且可能具有复杂的相互作用关系,暗示这些基因在协同调控叶的生长发育及光合作用中具有重要作用,但具体机制尚不明确. 拟南芥NF-YA1/5/6/9共同调控雄配子发育、胚胎发育、种子形态及萌发等[17-18],单个基因或两个基因的突变并不能发生表型的改变,但过表达其中任一基因均能影响种子的发育,暗示了太子参PhNF-YA亚家族也有功能冗余的可能性. 此外,PhNF-YA1及PhNF-YB3,PhNF-YB8在块根木质部中有较高表达,且进化分析结果显示PhNF-YA1,PhNF-YA4,PhNF-YA5,PhNF-YA8与AtNF-YA1,AtNF-YA9聚为一类,暗示了这些太子参NF-Y基因可能与太子参块根的发育有一定关系.

    NF-Y蛋白在水分胁迫过程中具有重要作用. 研究表明拟南芥大部分NF-YA基因呈上调表达,而小麦中NF-YA则相反[19-20]. 过表达AtNF-YB1和ZmNF-YB2可显著减少转基因植株的叶片水分流失及提高抗旱能力[21]. 部分NF-Y基因的转录受ABA途径调控,转录后受到miR169的调控[22]. 本研究中太子参PhNF-YA1,PhNF-YA4,PhNF-YA5,PhNF-YA7,PhNF-YA9,PhNF-YB2,PhNF-YB3,PhNF-YB8及PhNF-YC1,PhNF-YC3,PhNF-YC4在干旱胁迫下均显著上调,且进化分析结果显示PhNF-YB2,PhNF-YB3,PhNF-YB10与AtNF-YB1,AtNF-YB2等6个拟南芥NF-YB蛋白归入一类,暗示了这些太子参NF-YB蛋白与抗旱有密切联系. 此外,蛋白间互作关系暗示PhNF-YC3,PhNF-YC4在干旱胁迫响应过程中可能具有核心调控作用. 值得注意的是,PhNF-YA6及PhNF-YC2的表达随土壤水分的增加而增加,揭示了这些基因在太子参感知土壤水分变化的过程中具有重要作用.

    蔗糖及其衍生物不仅是光合同化物与能量的运输和贮藏形式,也是植物中一种重要的信号分子,调控基因表达及影响器官的生长发育[23-24]. 本研究分析了太子参NF-Y蛋白对蔗糖胁迫的响应,发现了大部分基因能够响应蔗糖浓度的变化,暗示了环境因子可通过影响组织中蔗糖的分布来调控NF-Y蛋白的表达,进而影响器官的形态建成.

Figure (5)  Table (1) Reference (24)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return