Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2021 Volume 43 Issue 8
Article Contents

YUAN Yue, ZHAO Ping. On the Rank of the Semigroup $\mathscr{H}$(n, m)*(r)[J]. Journal of Southwest University Natural Science Edition, 2021, 43(8): 65-69. doi: 10.13718/j.cnki.xdzk.2021.08.009
Citation: YUAN Yue, ZHAO Ping. On the Rank of the Semigroup $\mathscr{H}$(n, m)*(r)[J]. Journal of Southwest University Natural Science Edition, 2021, 43(8): 65-69. doi: 10.13718/j.cnki.xdzk.2021.08.009

On the Rank of the Semigroup $\mathscr{H}$(n, m)*(r)

More Information
  • Corresponding author: ZHAO Ping
  • Received Date: 01/04/2020
    Available Online: 20/08/2021
  • MSC: O152.7

  • Let \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ∈ \lt inline-formula \gt $\mathbb{N}$ \lt /inline-formula \gt \lt sub \gt + \lt /sub \gt and \lt inline-formula \gt $\mathscr{S}$ \lt /inline-formula \gt \lt sub \gt \lt i \gt n \lt /i \gt \lt /sub \gt and \lt inline-formula \gt $\mathscr{T}$ \lt /inline-formula \gt \lt sub \gt \lt i \gt n \lt /i \gt \lt /sub \gt be the symmetric group and the full transformation semigroup on \lt i \gt X \lt /i \gt \lt sub \gt \lt i \gt n \lt /i \gt \lt /sub \gt ={1, 2, …, \lt i \gt n \lt /i \gt }, respectively. For 1≤ \lt i \gt m \lt /i \gt ≤ \lt i \gt n \lt /i \gt -1, let \lt i \gt X \lt /i \gt \lt sub \gt \lt i \gt m \lt /i \gt \lt /sub \gt ={1, 2, …, \lt i \gt m \lt /i \gt }. Let $ \begin{array}{*{20}{c}} \mathscr{T}_{(n, m)}=\left\{\alpha \in \mathscr{T}_{n}: X_{m} \alpha=X_{m}\right\}\\ \mathscr{G}_{(n, m)}=\left\{\alpha \in \mathscr{T}_{(n, m)}:\left(X_{n} \backslash X_{m}\right) \alpha=X_{n} \backslash X_{m}\right\}\\ \mathscr{H}_{(n, m)}=\left\{\alpha \in \mathscr{T}_{(n, m)}:\left(X_{n} \backslash X_{m}\right) \alpha \subseteq X_{n} \backslash X_{m}\right\} \end{array} $ then the semigroups \lt inline-formula \gt $\mathscr{G}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt , \lt inline-formula \gt $\mathscr{H}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt and \lt inline-formula \gt $\mathscr{T}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt are all subsemigroups of the full transformation semigroup \lt inline-formula \gt $\mathscr{T}$ \lt /inline-formula \gt \lt sub \gt \lt i \gt n \lt /i \gt \lt /sub \gt , and \lt inline-formula \gt $\mathscr{G}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt ⊆ \lt inline-formula \gt $\mathscr{H}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt ⊆ \lt inline-formula \gt $\mathscr{T}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt . For \lt i \gt r \lt /i \gt ∈ \lt inline-formula \gt $\mathbb{N}$ \lt /inline-formula \gt \lt sub \gt + \lt /sub \gt and 2≤ \lt i \gt m \lt /i \gt \lt \lt i \gt r \lt /i \gt ≤ \lt i \gt n \lt /i \gt -1, we study the generating sets of the semigroup \lt inline-formula \gt $\mathscr{H}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt \lt sup \gt * \lt /sup \gt ( \lt i \gt r \lt /i \gt )={ \lt i \gt α \lt /i \gt ∈ \lt inline-formula \gt $\mathscr{H}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt : |im( \lt i \gt α \lt /i \gt )|≤ \lt i \gt r \lt /i \gt }∪ \lt inline-formula \gt $\mathscr{G}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt . By analyzing the binary relation of the semigroup \lt inline-formula \gt $\mathscr{H}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt and considering that the semigroup \lt inline-formula \gt $\mathscr{H}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt \lt sup \gt * \lt /sup \gt ( \lt i \gt r \lt /i \gt ) is the union of the ideal \lt inline-formula \gt $\mathscr{H}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt ( \lt i \gt r \lt /i \gt )={ \lt i \gt α \lt /i \gt ∈ \lt inline-formula \gt $\mathscr{H}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt : |im( \lt i \gt α \lt /i \gt )≤ \lt i \gt r \lt /i \gt } of the semigroup \lt inline-formula \gt $\mathscr{H}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt and the subsemigroup \lt inline-formula \gt $\mathscr{G}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt of the semigroup \lt inline-formula \gt $\mathscr{H}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt , it is found that \lt inline-formula \gt $\mathscr{H}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt ( \lt i \gt r \lt /i \gt ) can be generated by its top \lt inline-formula \gt $\mathscr{J}$ \lt /inline-formula \gt \lt sub \gt \lt i \gt r \lt /i \gt \lt /sub \gt \lt sup \gt ◇ \lt /sup \gt . Based on the property that the semigroup \lt inline-formula \gt $\mathscr{G}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt is a symmetric group, the equivalence class of the \lt inline-formula \gt $\mathscr{J}$ \lt /inline-formula \gt \lt sub \gt \lt i \gt r \lt /i \gt \lt /sub \gt \lt sup \gt ◇ \lt /sup \gt is divided, and the number of the equivalence classes in \lt inline-formula \gt $\mathscr{J}$ \lt /inline-formula \gt \lt sub \gt \lt i \gt r \lt /i \gt \lt /sub \gt \lt sup \gt ◇ \lt /sup \gt is studied by using the property of the integer splitting, so as to find the minimum generating set of the \lt inline-formula \gt $\mathscr{H}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt \lt sup \gt * \lt /sup \gt ( \lt i \gt r \lt /i \gt ). The results prove that the rank of the semigroup \lt inline-formula \gt $\mathscr{H}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt \lt sup \gt * \lt /sup \gt ( \lt i \gt r \lt /i \gt )(2≤ \lt i \gt m \lt /i \gt \lt \lt i \gt r \lt /i \gt ≤ \lt i \gt n \lt /i \gt -1) is \lt i \gt p \lt /i \gt \lt sub \gt ( \lt i \gt r \lt /i \gt - \lt i \gt m \lt /i \gt ) \lt /sub \gt ( \lt i \gt n \lt /i \gt - \lt i \gt m \lt /i \gt )+2.
  • 加载中
  • [1] 于晓丹, 孔祥智. Vague软Clifford半群[J]. 西南大学学报(自然科学版), 2020, 42(6): 46-53.

    Google Scholar

    [2] 张前滔, 赵平, 罗永贵. 半群TOPn(k)的格林(星)关系及富足性[J]. 西南师范大学学报(自然科学版), 2020, 45(6): 9-15.

    Google Scholar

    [3] GOMES G M S, HOWIE J M. On the Ranks of Certain Finite Semigroups of Transformations[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1987, 101(3): 395-403. doi: 10.1017/S0305004100066780

    CrossRef Google Scholar

    [4] HOWIE J M, MCFADDEN R B. Idempotent Rank in Finite Full Transformation Semigroups[J]. Proceedings of the Royal Society of Edinburgh (Section A Mathematics), 1990, 114(3-4): 161-167. doi: 10.1017/S0308210500024355

    CrossRef Google Scholar

    [5] AYIK G, AYIK H, HOWIE J M. On Factorisations and Generators in Transformation Semigroups[J]. Semigroup Forum, 2005, 70(2): 225-237. doi: 10.1007/s00233-004-0145-x

    CrossRef Google Scholar

    [6] TOKER K, AYIK H. On the Rank of Transformation Semigroup T(n, m)[J]. Turk J Math, 2018, 42(4): 1970-1977. doi: 10.3906/mat-1710-59

    CrossRef Google Scholar

    [7] 袁月, 赵平. 半群$\mathscr{H}$ (n, m)*(r)的极大子半群与极大正则子半群[J]. 山东大学学报(理学版), 2020, 55(12): 19-24.

    Google Scholar

    [8] GARBA G U. On the Nilpotent Ranks of Certain Semigroups of Transformations[J]. Glasgow Mathematical Journal, 1994, 36(1): 1-9. doi: 10.1017/S0017089500030482

    CrossRef Google Scholar

    [9] GOMES G M S, HOWIE J M. On the Ranks of Certain Semigroups of Order-Preserving Transformations[J]. Semigroup Forum, 1992, 45(1): 272-282. doi: 10.1007/BF03025769

    CrossRef Google Scholar

    [10] YIǦIT E, AYIK G, AYIK H. Minimal Relative Generating Sets of Some Partial Transformation Semigroups[J]. Communications in Algebra, 2017, 45(3): 1239-1245. doi: 10.1080/00927872.2016.1175604

    CrossRef Google Scholar

    [11] SOMMANEE W, SANWONG J. Rank and Idempotent Rank of Finite Full Transformation Semigroups with Restricted Range[J]. Semigroup Forum, 2013, 87(1): 230-242. doi: 10.1007/s00233-013-9467-x

    CrossRef Google Scholar

    [12] SANWONG J. The Regular Part of a Semigroup of Transformations with Restricted Range[J]. Semigroup Forum, 2011, 83(1): 134-146. doi: 10.1007/s00233-011-9320-z

    CrossRef Google Scholar

    [13] ZHAO P, FERNANDES V H. The Ranks of Ideals in Various Transformation Monoids[J]. Communications in Algebra, 2015, 43(2): 674-692. doi: 10.1080/00927872.2013.847946

    CrossRef Google Scholar

    [14] 赵平, 游泰杰, 徐波. 半群PC(n, r)的幂等元秩[J]. 吉林大学学报(理学版), 2012, 50(1): 44-48.

    Google Scholar

    [15] 赵平, 游泰杰, 徐波. 半群CPOn的秩[J]. 西南大学学报(自然科学版), 2011, 33(6): 106-110.

    Google Scholar

    [16] HARDY G H, WRIGHT E M. An Introduction to the Theory of Numbers(哈代数论·英文版)[M]. 6th ed. 北京: 人民邮电出版社, 2009.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(819) PDF downloads(285) Cited by(0)

Access History

Other Articles By Authors

On the Rank of the Semigroup $\mathscr{H}$(n, m)*(r)

    Corresponding author: ZHAO Ping

Abstract: Let \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ∈ \lt inline-formula \gt $\mathbb{N}$ \lt /inline-formula \gt \lt sub \gt + \lt /sub \gt and \lt inline-formula \gt $\mathscr{S}$ \lt /inline-formula \gt \lt sub \gt \lt i \gt n \lt /i \gt \lt /sub \gt and \lt inline-formula \gt $\mathscr{T}$ \lt /inline-formula \gt \lt sub \gt \lt i \gt n \lt /i \gt \lt /sub \gt be the symmetric group and the full transformation semigroup on \lt i \gt X \lt /i \gt \lt sub \gt \lt i \gt n \lt /i \gt \lt /sub \gt ={1, 2, …, \lt i \gt n \lt /i \gt }, respectively. For 1≤ \lt i \gt m \lt /i \gt ≤ \lt i \gt n \lt /i \gt -1, let \lt i \gt X \lt /i \gt \lt sub \gt \lt i \gt m \lt /i \gt \lt /sub \gt ={1, 2, …, \lt i \gt m \lt /i \gt }. Let $ \begin{array}{*{20}{c}} \mathscr{T}_{(n, m)}=\left\{\alpha \in \mathscr{T}_{n}: X_{m} \alpha=X_{m}\right\}\\ \mathscr{G}_{(n, m)}=\left\{\alpha \in \mathscr{T}_{(n, m)}:\left(X_{n} \backslash X_{m}\right) \alpha=X_{n} \backslash X_{m}\right\}\\ \mathscr{H}_{(n, m)}=\left\{\alpha \in \mathscr{T}_{(n, m)}:\left(X_{n} \backslash X_{m}\right) \alpha \subseteq X_{n} \backslash X_{m}\right\} \end{array} $ then the semigroups \lt inline-formula \gt $\mathscr{G}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt , \lt inline-formula \gt $\mathscr{H}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt and \lt inline-formula \gt $\mathscr{T}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt are all subsemigroups of the full transformation semigroup \lt inline-formula \gt $\mathscr{T}$ \lt /inline-formula \gt \lt sub \gt \lt i \gt n \lt /i \gt \lt /sub \gt , and \lt inline-formula \gt $\mathscr{G}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt ⊆ \lt inline-formula \gt $\mathscr{H}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt ⊆ \lt inline-formula \gt $\mathscr{T}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt . For \lt i \gt r \lt /i \gt ∈ \lt inline-formula \gt $\mathbb{N}$ \lt /inline-formula \gt \lt sub \gt + \lt /sub \gt and 2≤ \lt i \gt m \lt /i \gt \lt \lt i \gt r \lt /i \gt ≤ \lt i \gt n \lt /i \gt -1, we study the generating sets of the semigroup \lt inline-formula \gt $\mathscr{H}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt \lt sup \gt * \lt /sup \gt ( \lt i \gt r \lt /i \gt )={ \lt i \gt α \lt /i \gt ∈ \lt inline-formula \gt $\mathscr{H}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt : |im( \lt i \gt α \lt /i \gt )|≤ \lt i \gt r \lt /i \gt }∪ \lt inline-formula \gt $\mathscr{G}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt . By analyzing the binary relation of the semigroup \lt inline-formula \gt $\mathscr{H}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt and considering that the semigroup \lt inline-formula \gt $\mathscr{H}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt \lt sup \gt * \lt /sup \gt ( \lt i \gt r \lt /i \gt ) is the union of the ideal \lt inline-formula \gt $\mathscr{H}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt ( \lt i \gt r \lt /i \gt )={ \lt i \gt α \lt /i \gt ∈ \lt inline-formula \gt $\mathscr{H}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt : |im( \lt i \gt α \lt /i \gt )≤ \lt i \gt r \lt /i \gt } of the semigroup \lt inline-formula \gt $\mathscr{H}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt and the subsemigroup \lt inline-formula \gt $\mathscr{G}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt of the semigroup \lt inline-formula \gt $\mathscr{H}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt , it is found that \lt inline-formula \gt $\mathscr{H}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt ( \lt i \gt r \lt /i \gt ) can be generated by its top \lt inline-formula \gt $\mathscr{J}$ \lt /inline-formula \gt \lt sub \gt \lt i \gt r \lt /i \gt \lt /sub \gt \lt sup \gt ◇ \lt /sup \gt . Based on the property that the semigroup \lt inline-formula \gt $\mathscr{G}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt is a symmetric group, the equivalence class of the \lt inline-formula \gt $\mathscr{J}$ \lt /inline-formula \gt \lt sub \gt \lt i \gt r \lt /i \gt \lt /sub \gt \lt sup \gt ◇ \lt /sup \gt is divided, and the number of the equivalence classes in \lt inline-formula \gt $\mathscr{J}$ \lt /inline-formula \gt \lt sub \gt \lt i \gt r \lt /i \gt \lt /sub \gt \lt sup \gt ◇ \lt /sup \gt is studied by using the property of the integer splitting, so as to find the minimum generating set of the \lt inline-formula \gt $\mathscr{H}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt \lt sup \gt * \lt /sup \gt ( \lt i \gt r \lt /i \gt ). The results prove that the rank of the semigroup \lt inline-formula \gt $\mathscr{H}$ \lt /inline-formula \gt \lt sub \gt ( \lt i \gt n \lt /i \gt , \lt i \gt m \lt /i \gt ) \lt /sub \gt \lt sup \gt * \lt /sup \gt ( \lt i \gt r \lt /i \gt )(2≤ \lt i \gt m \lt /i \gt \lt \lt i \gt r \lt /i \gt ≤ \lt i \gt n \lt /i \gt -1) is \lt i \gt p \lt /i \gt \lt sub \gt ( \lt i \gt r \lt /i \gt - \lt i \gt m \lt /i \gt ) \lt /sub \gt ( \lt i \gt n \lt /i \gt - \lt i \gt m \lt /i \gt )+2.

  • nm$\mathbb{N}$+$\mathscr{S}$n$\mathscr{T}$n分别是Xn={1,2,…,n}上的对称群和全变换半群. 对于1≤mn-1,记Xm={1,2,…,m}. 令

    则易证得$\mathscr{G}$(nm)$\mathscr{H}$(nm)$\mathscr{T}$(nm)都是全变换半群$\mathscr{T}$n的子半群,且$\mathscr{G}$(nm)$\mathscr{H}$(nm)$\mathscr{T}$(nm). 显然$\mathscr{G}$(nm)=$\mathscr{T}$(nm)$\mathscr{S}$n$\mathscr{G}$(nm)$\mathscr{S}$m×$\mathscr{S}$n-m,其中$\mathscr{S}$n-mXn\Xm上的对称群.

    对于r$\mathbb{N}$+且2≤m+1≤rn-1,记

    则易证得$\mathscr{H}$ (nm)*(r)也是$\mathscr{T}$(nm)上的子半群且$\mathscr{H}$ (nm)*(n-1)=$\mathscr{H}$(nm).

    通常,我们定义有限半群S的秩为

    在半群理论研究中,对于变换半群结构的研究十分重要,变换半群的秩与其结构紧密相关,一直都是学者研究半群的热点问题之一[1-15]. 众所周知,对称群$\mathscr{S}$n=〈(12),(12…n)〉,且rank $\mathscr{S}$n=2;全变换半群$\mathscr{T}$n= $\left\langle {\left( {12} \right), \left( {12 \cdots n} \right), \left( {\begin{array}{*{20}{c}} 1\\ 2 \end{array}} \right)} \right\rangle $,且rank$\mathscr{T}$n=3. 文献[3]研究了Xn上的奇异变换半群Singn的秩及幂等元秩,并得到它的秩及幂等元秩都为$\frac{{n\left( {n - 1} \right)}}{2}$. 文献[4]研究了奇异变换半群Singn的理想$\mathscr{T}$(nr)={α$\mathscr{T}$n:|im(α)|≤r}(1≤rn-1)的秩和幂等元秩,并证明了其秩和幂等元秩都为第二类Stirling数S(nr). 第二类Stirling数定义为

    文献[5]研究了半群$\mathscr{T}$nr=$\mathscr{S}$n$\mathscr{T}$(nr)的生成元和相关秩. 文献[6]研究了$\mathscr{G}$(nm)的生成集及秩,并得到$\mathscr{T}$(nm)的秩,即

    本文在文献[6]的基础上研究半群$\mathscr{T}$(nm)的子半群$\mathscr{H}$ (nm)*(r)的生成集及它的秩.

    为了叙述上的方便,在$\mathscr{H}$(nm)上引入以下的二元关系:对任意αβ$\mathscr{H}$(nm),定义

    $\mathscr{L}$ $\mathscr{R}$ $\mathscr{J}$ 都是$\mathscr{H}$(nm)上的等价关系. 易得$\mathscr{L}$ $\mathscr{J}$ $\mathscr{R}$ $\mathscr{J}$ . 对r$\mathbb{N}$+且2≤m+1≤rn,记

    $\mathscr{J}$ -类$\mathscr{J}$ n$\mathscr{J}$ n-1,…,$\mathscr{J}$ m+1恰好是$\mathscr{H}$(nm)n-m$\mathscr{J}$ -类. 显然$\mathscr{G}$(nm)=$\mathscr{J}$ n.

    设1≤mn-1,用$\mathscr{S}$n-m$\mathscr{T}$n-m分别表示Xn\Xm上的对称群和全变换半群. 用$\mathscr{S}$m表示Xm上的对称群. 设α$\mathscr{T}$n,记ker(α)={(xy)∈Xn×Xn=},则ker(α)是Xn上的等价关系,称为α的核.

    引理1[6]  设1≤mn-1,则

    对于2≤m+1≤rn,记

    $\mathscr{H}$ (nm)*(r)=$\mathscr{H}$(nm)(r)∪$\mathscr{G}$(nm). 显然,$\mathscr{H}$(nm)(r)是$\mathscr{H}$(nm)的理想,且

    引理2[7]  设1≤mrn-1,则$\mathscr{H}$(nm)(r)=〈$\mathscr{J}$ r〉.

    任意取nr$\mathbb{N}$+rn,令

    称集合Pr(n)中的元素(x1x2,…,xr)为n的一个r-划分,记pr(n)=|Pr(n)|(参见文献[16]). 当xr-m+1=xr-m+2=…=xr=1(1≤mr)时,记

    α$\mathscr{J}$ r,则α有如下标准形式:

    其中Ai={i}(1≤im),Xm={a1a2,…,am}且aiXn\Xm(m+1≤ir). 显然存在σ$\mathscr{S}$r,使得|A|≥|A(r-1)σ|≥…≥|A(m+1)σ|≥1且A=Ai(1≤im). 记

    称part(α)为α的划分. 显然part(α)∈Pr(n).

    任意取αβ$\mathscr{J}$ r,在$\mathscr{J}$ r上引入关系~:α~β⇔存在λμ$\mathscr{G}$(nm),使得α=λβμ. 易验证~是$\mathscr{J}$ r上的等价关系.

    引理3[7]  设1≤mrn-1且αβ$\mathscr{J}$ r,则α~β当且仅当part(α)=part(β).

    对任意α$\mathscr{J}$ r,记

    Δ(nm)$\mathscr{J}$ r在~下的商集,[α]是α所在的等价类. 由引理3易知$\mathscr{J}$ r中有pr-m(n-m)个~等价类,从而|Δ(nm)|=pr-m(n-m). 设~在$\mathscr{J}$ r上所决定的所有等价类为[δ1],[δ2],…,[δp],其中p=pr-m(n-m)(m+1≤rn-1). 记Ω={δ1δ2,…,δp},则Ω是~在$\mathscr{J}$r上所决定的等价类的代表元集合.

    引理4   设1≤mrn-1,则$\mathscr{H}$ (nm)*(r)=〈$\mathscr{G}$(nm)Ω〉.

       显然〈$\mathscr{G}$(nm)Ω〉⊆$\mathscr{H}$ (nm)*(r). 注意到$\mathscr{J}_r^\diamondsuit = \bigcup\limits_{i = 1}^p {\left[ {{\delta _i}} \right]}$. 任意取βi∈[δi],则存在λiμi$\mathscr{G}$(nm),使得

    从而[δi]⊆〈$\mathscr{G}$(nm)δi〉. 由βi的任意性可得$\mathscr{J}$ r⊆〈$\mathscr{G}$(nm)Ω〉. 由引理2知易知

    从而

    因此

    引理5   设1≤mrn-1,任意取αβ$\mathscr{J}$ r,若αβ$\mathscr{J}$ r,则ker(αβ)=ker(α).

       设αβ的标准形式为

    其中Ai=Bi={i}(1≤im),Xm={a1a2,…,am}={b1b2,…,bm}且aibiXn\Xm(m+1≤ir). 由αβ$\mathscr{J}$ r可得,存在σ$\mathscr{S}$r使得aiB,于是aiβ=b,从而

    因此ker(αβ)=ker(α).

    引理6   设1≤mrn-1,G$\mathscr{H}$ (nm)*(r)的生成集,则对任意qPr(n),存在αG,使得part(α)=q.

       由引理2可得

    $\tilde G$ =G$\mathscr{J}$ r,则

    G$\mathscr{H}$ (nm)*(r)的生成集可得

    对任意$q \in {\tilde P_r}\left( n \right)$,取βq$\mathscr{J}$ r$\mathscr{H}$ (nm)*(r),使得part(βq)=q. 由$\mathscr{H}$ (nm)*(r)=〈$\tilde G$$\mathscr{G}$(nm)〉可得,存在α1α2,…,αt$\tilde G$$\mathscr{G}$(nm),使得βq=α1α2αt. 由βq$\mathscr{J}$ r可知,必存在k∈{1,2,…,t},使得αk$\tilde G$ (否则βq=α1α2αt$\mathscr{G}$(nm),矛盾). 令

    λ=1Xnα1αi-1γ=αi+1αt1Xn,则由βq$\mathscr{J}$ r可得

    γ$\mathscr{G}$(nm),则βq~αi. 从而由引理3可得part(αi)=part(βq)=q. 注意到λαi$\mathscr{J}$ rαi~λαi. 若γ$\mathscr{J}$ r,则由引理5可得ker(βq)=ker(λαiγ)=ker(λαi),从而由引理3可得part(αi)=part(λαi)=part(βq)=q.

    定理1   设2≤mrn-1,则

       假设G$\mathscr{H}$ (nm)*(r)的生成集,则由$\mathscr{G}$(nm)$\mathscr{H}$ (nm)*(r)且rank $\mathscr{G}$(nm)=2可得|G$\mathscr{G}$(nm)|≥2. 再由引理6可得

    于是由$\mathscr{H}$ (nm)*(r)=$\mathscr{G}$(nm)$\mathscr{H}$(nm)(r)可得

    从而

    由rank $\mathscr{G}$(nm)=2可知,存在λμ$\mathscr{G}$(nm),使得$\mathscr{G}$(nm)=〈λμ〉,于是由引理4可得

    从而

    因此

Reference (16)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return