Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2022 Volume 44 Issue 5
Article Contents

WANG Shengjun, HAN Yazhou. A Class of Weighted Hardy Inequalities with Remainder Terms for Generalized p-degenerate Sub-elliptic Heisenberg-Greiner Operators[J]. Journal of Southwest University Natural Science Edition, 2022, 44(5): 89-96. doi: 10.13718/j.cnki.xdzk.2022.05.011
Citation: WANG Shengjun, HAN Yazhou. A Class of Weighted Hardy Inequalities with Remainder Terms for Generalized p-degenerate Sub-elliptic Heisenberg-Greiner Operators[J]. Journal of Southwest University Natural Science Edition, 2022, 44(5): 89-96. doi: 10.13718/j.cnki.xdzk.2022.05.011

A Class of Weighted Hardy Inequalities with Remainder Terms for Generalized p-degenerate Sub-elliptic Heisenberg-Greiner Operators

More Information
  • Received Date: 28/04/2021
    Available Online: 20/05/2022
  • MSC: O175.25

  • In this paper, we present the improved versions of weighted Hardy inequalities with remainder terms for the generalized p-degenerate sub-elliptic Heisenberg-Greiner operators. By employing divergence theorem and choosing suitable vector fields, we obtained some weighted Hardy inequalities with remainder terms. Furthermore, the proof ofthe best constants is given by combining with the approximation method, which extend the existing results.
  • 加载中
  • [1] RUZHANSKY M, SURAGAN D. Chapter 2 Hardy Inequalities on Homogeneous Groups[M] //Hardy Inequalities on Homogeneous Groups. Cham: Springer International Publishing, 2019: 71-127.

    Google Scholar

    [2] 王胜军, 窦井波. Heisenberg型群上的广义Picone恒等式及其应用[J]. 西南大学学报(自然科学版), 2020, 42(2): 48-54.

    Google Scholar

    [3] ZHANG H Q, NIU P C. Hardy-Type Inequalities and Pohozaev-Type Identities for a Class of P-Degenerate Subelliptic Operators and Applications[J]. Nonlinear Analysis: Theory, Methods & Applications, 2003, 54(1): 165-186.

    Google Scholar

    [4] GAROFALO N, LANCONELLI E. Frequency Functions on the Heisenberg Group, the Uncertainty Principle and Unique Continuation[J]. Annales De l'Institut Fourier, 1990, 40(2): 313-356. doi: 10.5802/aif.1215

    CrossRef Google Scholar

    [5] D'AMBROSIO L. Hardy-Type Inequalities Related to Degenerate Elliptic Differential Operators[J]. Annali Scuola Normale Superiore-Classe Di Scienze, 2005: 4(5): 451-486.

    Google Scholar

    [6] KOMBE I. Sharp Weighted Rellich and Uncertainty Principle Inequalities on Carnot Groups[J]. Communications in Applied Analysis, 2010, 14(2): 251-272.

    Google Scholar

    [7] RUZHANSKY M, SURAGAN D. Hardy and Rellich Inequalities, Identities, and Sharp Remainders on Homogeneous Groups[J]. Advances in Mathematics, 2017, 317: 799-822. doi: 10.1016/j.aim.2017.07.020

    CrossRef Google Scholar

    [8] DOU J B, NIU P C, YUAN Z X. A Hardy Inequality with Remainder Terms in the Heisenberg Group and the Weighted Eigenvalue Problem[J]. Journal of Inequalities and Applications, 2007, 2007(1): 032585. doi: 10.1155/2007/32585

    CrossRef Google Scholar

    [9] XI L, DOU J B. Some Weighted Hardy and Rellich Inequalities on the Heisenberg Group[J]. International Journal of Mathematics, 2021, 32(3): 2150011. doi: 10.1142/S0129167X21500117

    CrossRef Google Scholar

    [10] GREINER P C. A Fundamental Solution for a Nonelliptic Partial Differential Operator[J]. Canadian Journal of Mathematics, 1979, 31(5): 1107-1120. doi: 10.4153/CJM-1979-101-3

    CrossRef Google Scholar

    [11] BEALS R, GAVEAU B, GREINER P. On a Geometric Formula for the Fundamental Solution of Subelliptic Laplacians[J]. Mathematische Nachrichten, 1996, 181(1): 81-163. doi: 10.1002/mana.3211810105

    CrossRef Google Scholar

    [12] BEALS R, GREINER P, GAVEAU B. Green's Functions for some Highly Degenerate Elliptic Operators[J]. Journal of Functional Analysis, 1999, 165(2): 407-429. doi: 10.1006/jfan.1999.3421

    CrossRef Google Scholar

    [13] BEALS R, GAVEAU B, GREINER P. Uniforms Hypoelliptic Green's Functions[J]. Journal De Mathématiques Pures et Appliquées, 1998, 77(3): 209-248. doi: 10.1016/S0021-7824(98)80069-X

    CrossRef Google Scholar

    [14] FOLLAND G B. A Fundamental Solution for a Subelliptic Operator[J]. Bulletin of the American Mathematical Society, 1973, 79(2): 373-376. doi: 10.1090/S0002-9904-1973-13171-4

    CrossRef Google Scholar

    [15] GAROFALO N, SHEN Z W. Absence of Positive Eigenvalues for a Class of Subelliptic Operators[J]. Mathematische Annalen, 1996, 304(1): 701-715. doi: 10.1007/BF01446315

    CrossRef Google Scholar

    [16] NIU P C, OU Y F, HAN J Q. Several Hardy Type Inequalities with Weights Related to Generalized Greiner Operator[J]. Canadian Mathematical Bulletin, 2010, 53(1): 153-162. doi: 10.4153/CMB-2010-029-9

    CrossRef Google Scholar

    [17] 王胜军, 韩亚洲. 广义HEISENBERG-GREINER p-退化椭圆算子的两类含权Hardy不等式[J]. 西南大学学报(自然科学版), 2022, 44(3): 102-108.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(713) PDF downloads(266) Cited by(0)

Access History

Other Articles By Authors

A Class of Weighted Hardy Inequalities with Remainder Terms for Generalized p-degenerate Sub-elliptic Heisenberg-Greiner Operators

Abstract: In this paper, we present the improved versions of weighted Hardy inequalities with remainder terms for the generalized p-degenerate sub-elliptic Heisenberg-Greiner operators. By employing divergence theorem and choosing suitable vector fields, we obtained some weighted Hardy inequalities with remainder terms. Furthermore, the proof ofthe best constants is given by combining with the approximation method, which extend the existing results.

  • 开放科学(资源服务)标志码(OSID):

  • 近年来,不仅出现了更多关于含权Hardy不等式的研究成果[1-5],而且在齐次群上获得了改进后的Hardy不等式[6-7]. 但是关于带余项的Hardy不等式的研究文献并不多见. 文献[8]在Heisenberg群上建立了带有余项的Hardy不等式:若Ω$\mathbb{H}$n,0∈ΩpQ,则对于uD01,p(Ω\{0}),RR0存在M0>0,使得$\sup\limits_{x \in \varOmega} d(x) \mathrm{e}^{\frac{1}{M_{0}}}=R_{0}<\infty$,有

    而且当2≤pQ时,可以得到

    其中(1)式中的常数$\left|\frac{Q-p}{p}\right|^{p}, \frac{p-1}{2 p}\left|\frac{Q-p}{p}\right|^{p-2}$是最佳的.

    本文使用类似于文献[8-9]的方法,针对广义Heisenberg-Greiner p-退化椭圆算子,利用散度定理引入一类性质恰当的向量场,结合逼近的思想,推广了(1)式,得到了广义Heisenberg-Greiner p-退化椭圆算子的一类带有余项的含权Hardy不等式,进一步给出了最佳常数的证明. 这个结果包含了已有的相关结论.

1.   预备知识
  • 广义Heisenberg-Greiner p-退化椭圆算子作为一类具有高奇性的平方和退化椭圆算子[10],被越来越多的学者所关注,并得到了许多重要的成果[11]. 其构成向量场(见下文)XjYj(j=1,2,…,n)在k>1时不满足Hörmander有限秩条件,从而它的亚椭圆性无法由此导出,增加了研究的难度[12-13]. 以下给出广义Heisenberg-Greiner p-退化椭圆算子的基本知识.

    广义Heisenberg-Greiner p-退化椭圆算子形为

    其中:$\nabla_{L}=\left(X_{1}, \cdots, X_{n}, Y_{1}, \cdots, Y_{n}\right), \operatorname{div}_{L}\left(u_{1}, \cdots, u_{2 n}\right)=\sum\limits_{j=1}^{n}\left(X_{j} u_{j}+Y_{j} u_{n+j}\right), p>1$,这里$X_{j}=\frac{\partial}{\partial x_{j}}+2 k y_{j}|z|^{2 k-2} \frac{\partial}{\partial t}, Y_{j}=\frac{\partial}{\partial y_{j}}-2 k x_{j}|z|^{2 k-2} \frac{\partial}{\partial t}, z_{j}=x_{j}+\sqrt{-1} y_{j} \in \mathbb{C}$j=1,2,…,nt$\mathbb{R}$k≥1. 注意到,当p=2,k=1时,$\mathscr{L}$p就成为Heisenberg群$\mathbb{H}$n上的Kohn Laplacian算子Δ$\mathbb{H}$n[14]. 当p=2,k=2,3,…时,$\mathscr{L}$p就成为Greiner算子[15]

    ξ=(zt)=(xyt)∈$\mathbb{R}$2n+1,相应于(2)式中$\mathscr{L}$p的一个自然伸缩为

    与伸缩(3)式相应的齐次维数是对应的齐次维数Q=2n+2k. 由(3)式诱导的一个拟距离为

    通过(4)式直接计算知道

    本文在证明最佳常数时,用到了文献[16]中关于广义Heisenberg-Greiner p-退化椭圆算子的极坐标变换(xyt)(ρθθ1,…,θ2n-1). 若u(ξ)=ψpv(d(ξ)),则

    其中$s_{n, k}=\omega_{n} \int_{0}^{\pi}(\sin \theta)^{\frac{Q-2}{2 k}} \mathrm{~d} \theta$ωn是在$\mathbb{R}$2n中单位Euclidean球的2n-Lebesgue测度.

    另外,定义中心在{0}⊂$\mathbb{R}$2n+1,半径为R的拟开球为BR(ξ)={ξ$\mathbb{R}$2n+1|d(ξ)<R}.

    Ω$\mathbb{R}$2n+1Ω是开子集,C0k(Ω)表示Ck(Ω)中具有紧支集的函数构成的集合,D01,p(Ω)(1<p<∞)是C0(Ω)在范数

    下的完备化.

2.   两个重要引理
  • 为证明(23)式中常数的最佳性,在这部分给出两个重要引理. 首先定义测试函数及相关函数.

    对于一个任意小的δ>0,定义测试函数φ(ξ)∈C0(Ω)满足0≤φ≤1,$\left|\nabla_{L} \varphi\right|<2 \frac{\left|\nabla_{L} d\right|}{d}$

    对于一个任意小的ε>0,定义下列函数

    其中$\eta(s)=-\frac{1}{\ln s}, s \in(0, 1)$. 容易知道当$\sup\limits_{\xi \in \varOmega} d(\xi)<R, \xi \in \varOmega$时,就会存在常数M>0,使得

    引理1  对于ε>0,以下式子成立:

    (ⅰ) -1-γJγ(ε)≤-1-γγ>-1;

    (ⅱ) $J_{\gamma}(\varepsilon)=\frac{p \varepsilon}{\gamma+1} J_{\gamma+1}(\varepsilon)+O_{\varepsilon}(1), \gamma>-1$

    (ⅲ) Jγ(ε)=Oε(1),γ<-1.

      设$\rho=R \tau^{\frac{1}{\varepsilon}}$,有$\mathrm{d} \rho=\frac{1}{\varepsilon} R \tau^{\frac{1}{\varepsilon}-1} \mathrm{~d} \tau, \eta^{-\gamma}\left(\tau^{\frac{1}{\varepsilon}}\right)=\varepsilon^{-\gamma} \eta^{-\gamma}(\tau)$,由(6)式得

    容易知道

    通过(10)式可以知道(9)式中

    是有限的,这样(ⅰ)右边不等式得到证明. 利用(5)式,由(7)式知道在$B_{\frac{\delta}{2}}(\xi)$上,φ=1,从而

    同样在(11)式中,利用(10)式证得(ⅰ)左边不等式成立.

    容易知道

    Ωη={ξΩ|d(ξ)>ηη>0},有

    再利用(12)式,得到

    又由于

    其中通过(6)式与(7)式知道

    根据(ⅰ)得到

    从而

    因此,结合(13)式和(14)式有

    这样(ⅱ)得到证明.

    利用极坐标变换(6)式,有

    γ<-1时,通过(10)式可以知道(15)式是有限的,从而在(15)式两边取ε→0,证得(ⅲ)成立.

    引理2  对于ε→0,以下式子成立

    (ⅰ) $I\left(V_{\varepsilon}\right) \leqslant \frac{\theta(p-1)}{2}|A|{ }^{p-2} J_{p \theta-2}(\varepsilon)+O_{\varepsilon}(1)$

    (ⅱ) $\int_{B_{\delta}(\xi)} \frac{\left|\nabla_{L} d\right|^{\beta-p}}{d^{\alpha-p}}\left|\nabla_{L} V_{\varepsilon}\right|^{p} \mathrm{~d} \xi \leqslant|A|^{p} J_{p \theta}(\varepsilon)+O_{\varepsilon}\left(\varepsilon^{1-p \theta}\right)$.

      已知$\nabla_{L} V_{\varepsilon}(\xi)=\varphi(\xi) \nabla_{L} \omega_{\varepsilon}+\omega_{\varepsilon} \nabla_{L} \varphi$. 及

    利用(16)式,有

    利用

    得到

    由于$\left|A-\left(\varepsilon-\theta \eta\left(\frac{d}{R}\right)\right)\right|$是有界的,通过(8)式得到

    利用引理1的(ⅱ)知道ΠA1ΠA2=Oε(1),ε→0.

    结合(17)式有

    其中

    ζA. 利用Taylor公式,得到

    这样

    其中

    以下证明

    在引理1的(ⅱ)中,取γ=-1+得到

    利用不等式

    由1<<2,结合引理1的(ⅰ)及(ⅲ),得到ΠB3=Oε(1). 在引理1的(ⅱ)中取γ=-1>-1后,再次取γ=-2>-1,有

    结合(18)-(21)式,得到引理2的(ⅰ). 结合(18),(21)式及引理2的(ⅰ),有

    因此,引理2的(ⅱ)成立.

3.   一类带有余项的含权Hardy不等式
  • 定理1  若1<p<∞,αQβ>2-Qab$\mathbb{R}$,则对于uC0(Ω\{0}),RR0,有

    特别地,在(22)式中取a=b=0,有下列带有余项的权Hardy不等式

    (23) 式中的常数是最佳的,其中$A=\frac{Q-\alpha}{p}$.

      (22),(23)式的证明见文献[17]中第三部分定理1的证明.

    以下证明(23)式中常数的最佳性.

    1) 通过引理2的(ⅱ),得到

    已知当ε→0时有J(ε)→∞,所以当ε→0时,有

    2) 通过引理2的(ⅰ),得到

    已知当ε→0时,有J-2(ε)→∞,所以由引理1的(ⅰ),得到当ε→0时,$\frac{I\left(V_{\varepsilon}\right)}{J_{p \theta-2}(\varepsilon)} \longrightarrow \frac{\theta(p-1)}{2}|A|^{p-2}$. 于是当$\theta \rightarrow \frac{1}{p} \text { 时 }\left.\frac{I\left(V_{\varepsilon}\right)}{J_{p \theta-2}(\varepsilon)} \longrightarrow \frac{(p-1)}{2 p}|A|\right|^{p-2}$.

    综合1),2),(23)式中常数的最佳性得证.

    注1  在(23)式中,取k=1,α=pβ=p时,得到(1)式.

Reference (17)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return