Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2024 Volume 46 Issue 2
Article Contents

WANG Xiaowen, WANG Yuanyuan, FENG Beiqi, et al. Identification and Map-based Cloning of Multi-tillering Dwarf Mutant mtd2/htd1-1 in Rice (Oryza sativa L.)[J]. Journal of Southwest University Natural Science Edition, 2024, 46(2): 2-12. doi: 10.13718/j.cnki.xdzk.2024.02.001
Citation: WANG Xiaowen, WANG Yuanyuan, FENG Beiqi, et al. Identification and Map-based Cloning of Multi-tillering Dwarf Mutant mtd2/htd1-1 in Rice (Oryza sativa L.)[J]. Journal of Southwest University Natural Science Edition, 2024, 46(2): 2-12. doi: 10.13718/j.cnki.xdzk.2024.02.001

Identification and Map-based Cloning of Multi-tillering Dwarf Mutant mtd2/htd1-1 in Rice (Oryza sativa L.)

More Information
  • Corresponding author: SANG Xianchun
  • Received Date: 12/08/2023
    Available Online: 20/02/2024
  • MSC: S326

  • Plant height is an important factor of plant architecture, and tillering is the basis for the formation of effective panicle. Both of them are important agronomic traits of rice. To study the molecular mechanism of plant height and tiller development, we used EMS to mutate the maintainer line Xida 1B, and identified a multi-tillering and dwarf mutant named mtd2. Compared with wild-type (WT) Xida 1B, mtd2 had 6.25 times more tillers than WT, and plant height was 49.12 cm, only 59.4% of WT. In addition, mtd2 had smaller panicles and shorter leaves. Genetic analysis showed that mutant phenotypes of mtd2 with increased tillers and plant dwarf was co-segregated and regulated by single recessive nuclear genes. Using the F2 recessive population of mtd2 and Jinhui 10 crossing, the MTD2 gene was finally fine-positioned within a physical distance of 157 kb on chromosome 4 between molecular markers C04-2 and C04-3. Bioinformatics analysis revealed that the mapping interval contained a cloned gene LOC_Os04g46470-HTD1(HTD1). DNA sequencing revealed an 11-base deletion in the HTD1 coding region, which caused a frameshift mutation. The complementary vector was constructed and transformed into mutant mtd2. The dwarf and multi tiller phenotype of mtd2 returned to normal, proving that mtd2 is a new allelic mutant of htd1. Cytological analysis showed that the increase of tiller number in mtd2 was due to the rapid development of tiller buds, which led to more tiller buds. In addition, the qRT-PCR results indicated that MTD2 may be involved in the regulatory network of tillering bud development related to strigolactones (SLs), which laid the foundation for further identification of the function of MTD2/HTD1 genes.

  • 加载中
  • [1] 隗溟, 廖学群, 李冬霞, 等. 水稻分蘖节位生产力比较[J]. 植物生态学报, 2012, 36(4): 324-332.

    Google Scholar

    [2] 潘寿, 骆乐, 刘小红, 等. 氮素对水稻分蘖芽发育的影响及其作用机制[J]. 南京农业大学学报, 2016, 39(6): 973-978.

    Google Scholar

    [3] 王秀梅, 梁越洋, 李玲, 等. OsMAX1a, OsMAX1e通过参与独角金内酯的合成调控水稻分蘖[J]. 中国水稻科学, 2015, 29(3): 223-231. doi: 10.3969/j.issn.1001-7216.2015.03.001

    CrossRef Google Scholar

    [4] HUSSIEN A, TAVAKOL E, HORNER D S, et al. Genetics of Tillering in Rice and Barley[J]. The Plant Genome, 2014, 7(1): 93-113.

    Google Scholar

    [5] 吴先美, 李三峰, 胡萍, 等. 水稻分蘖调控基因HTD3的克隆与功能研究[J]. 中国水稻科学, 2021, 35(6): 535-542.

    Google Scholar

    [6] KARIALI E, MOHAPATRA P K. Hormonal Regulation of Tiller Dynamics in Differentially-Tillering Rice Cultivars[J]. Plant Growth Regulation, 2007, 53(3): 215-223. doi: 10.1007/s10725-007-9221-z

    CrossRef Google Scholar

    [7] HARRISON M A, KAUFMAN P B. Hormonal Regulation of Lateral Bud (Tiller) Release in Oats (Avena sativa L.)[J]. Plant Physiology, 1980, 66(6): 1123-1127. doi: 10.1104/pp.66.6.1123

    CrossRef Google Scholar

    [8] 刘杨, 丁艳锋, 王强盛, 等. 植物生长调节剂对水稻分蘖芽生长和内源激素变化的调控效应[J]. 作物学报, 2011, 37(4): 670-676.

    Google Scholar

    [9] 孙祥武, 于福庆, 张家成. 氮磷钾养分对水稻分蘖的影响[J]. 农业与技术, 2006, 26(6): 62-63. doi: 10.3969/j.issn.1671-962X.2006.06.021

    CrossRef Google Scholar

    [10] 蒋彭炎, 马跃芳, 洪晓富, 等. 水稻分蘖芽的环境敏感期研究[J]. 作物学报, 1994, 20(3): 290-296.

    Google Scholar

    [11] 孙爱华, 朱士江, 张忠学. 不同灌溉模式下氮磷钾配比及追施比例对水稻生长特征及产量的影响[J]. 灌溉排水学报, 2016, 35(10): 31-35, 63.

    Google Scholar

    [12] LI X Y, QIAN Q, FU Z M, et al. Control of Tillering in Rice[J]. Nature, 2003, 422(6932): 618-621. doi: 10.1038/nature01518

    CrossRef Google Scholar

    [13] SHAO G N, LU Z F, XIONG J S, et al. Tiller Bud Formation Regulators MOC1 and MOC3 Cooperatively Promote Tiller Bud Outgrowth by Activating FON1 Expression in Rice[J]. Molecular Plant, 2019, 12(8): 1090-1102. doi: 10.1016/j.molp.2019.04.008

    CrossRef Google Scholar

    [14] SUZAKI T, SATO M, ASHIKARI M, et al. The Gene FLORAL ORGAN NUMBER1 Regulates Floral Meristem Size in Rice and Encodes a Leucine-Rich Repeat Receptor Kinase Orthologous to Arabidopsis CLAVATA1[J]. Development, 2004, 131(22): 5649-5657. doi: 10.1242/dev.01441

    CrossRef Google Scholar

    [15] 罗宝杰, 许俊旭, 丁艳锋, 等. 内源CTK和IAA平衡对水稻分蘖芽休眠与萌发的影响[J]. 作物学报, 2014, 40(9): 1619-1628.

    Google Scholar

    [16] 安琪, 季雯珺, 何永刚, 等. 水稻成蘖特性及相关氮同化酶活性、基因表达分析[J]. 湖北农业科学, 2020, 59(23): 174-179.

    Google Scholar

    [17] WANG G Y, RÖMHELD V, LI C J, et al. Involvement of Auxin and CKs in Boron Deficiency Induced Changes in Apical Dominance of Pea Plants (Pisum sativum L.)[J]. Journal of Plant Physiology, 2006, 163(6): 591-600. doi: 10.1016/j.jplph.2005.09.014

    CrossRef Google Scholar

    [18] TAKEDA T, SUWA Y, SUZUKI M, et al. The OsTB1 Gene Negatively Regulates Lateral Branching in Rice[J]. The Plant Journal, 2003, 33(3): 513-520. doi: 10.1046/j.1365-313X.2003.01648.x

    CrossRef Google Scholar

    [19] LU Z F, YU H, XIONG G S, et al. Genome-wide Binding Analysis of the Transcription Activator IDEAL PLANT ARCHITECTURE1 Reveals a Complex Network Regulating Rice Plant Architecture[J]. The Plant Cell, 2013, 25(10): 3743-3759. doi: 10.1105/tpc.113.113639

    CrossRef Google Scholar

    [20] SONG X G, LU Z F, YU H, et al. IPA1 Functions as a Downstream Transcription Factor Repressed by D53 in Strigolactone Signaling in Rice[J]. Cell Research, 2017, 27(9): 1128-1141.

    Google Scholar

    [21] ARITE T, IWATA H, OHSHIMA K, et al. DWARF10, an RMS1/MAX4/DAD1 Ortholog, Controls Lateral Bud Outgrowth in Rice[J]. The Plant Journal, 2007, 51(6): 1019-1029. doi: 10.1111/j.1365-313X.2007.03210.x

    CrossRef Google Scholar

    [22] LIN H, WANG R X, QIAN Q, et al. DWARF27, an Iron-Containing Protein Required for the Biosynthesis of Strigolactones, Regulates Rice Tiller Bud Outgrowth[J]. The Plant Cell, 2009, 21(5): 1512-1525.

    Google Scholar

    [23] LIU L H, REN M M, PENG P, et al. MIT1, Encoding a 15-Cis-ζ-Carotene Isomerase, Regulates Tiller Number and Stature in Rice[J]. Journal of Genetics and Genomics, 2021, 48(1): 88-91. doi: 10.1016/j.jgg.2020.11.008

    CrossRef Google Scholar

    [24] ZOU J H, CHEN Z X, ZHANG S Y, et al. Characterizations and Fine Mapping of a Mutant Gene for High Tillering and Dwarf in Rice (Oryza sativa L.)[J]. Planta, 2005, 222(4): 604-612.

    Google Scholar

    [25] ZOU J H, ZHANG S Y, ZHANG W P, et al. The Rice HIGH-TILLERING DWARF1 Encoding an Ortholog of Arabidopsis MAX3 is Required for Negative Regulation of the Outgrowth of Axillary Buds[J]. The Plant Journal, 2006, 48(5): 687-698.

    Google Scholar

    [26] LIU Q, SHEN G Z, PENG K Q, et al. The Alteration in the Architecture of a T-DNA Insertion Rice Mutant osmtd1 is Caused by Up-Regulation of MicroRNA156f[J]. Journal of Integrative Plant Biology, 2015, 57(10): 819-829.

    Google Scholar

    [27] DAI Z Y, WANG J, YANG X F, et al. Modulation of Plant Architecture by the MiR156f-OsSPL7-OsGH3.8 Pathway in Rice[J]. Journal of Experimental Botany, 2018, 69(21): 5117-5130.

    Google Scholar

    [28] 朱洪慧, 李映姿, 王成洋, 等. 水稻小粒突变体smg2的表型鉴定和候选基因分析[J]. 西南大学学报(自然科学版), 2023, 45(1): 2-11.

    Google Scholar

    [29] MURRAY M G, THOMPSON W F. Rapid Isolation of High Molecular Weight Plant DNA[J]. Nucleic Acids Research, 1980, 8(19): 4321-4325.

    Google Scholar

    [30] 谢佳, 张孝波, 陶怡然, 等. 水稻短穗小粒突变体sps1的鉴定与基因精细定位[J]. 中国农业科学, 2018, 51(9): 1617-1626.

    Google Scholar

    [31] SUN H W, LI W Q, BURRITT D J, et al. Strigolactones Interact with other Phytohormones to Modulate Plant Root Growth and Development[J]. The Crop Journal, 2022, 10(6): 1517-1527.

    Google Scholar

    [32] XU E J, CHAI L, ZHANG S Q, et al. Catabolism of Strigolactones by a Carboxylesterase[J]. Nature Plants, 2021, 7(11): 1495-1504.

    Google Scholar

    [33] OMOARELOJIE L O, KULKARNI M G, FINNIE J F, et al. Strigolactones and Their Crosstalk with other Phytohormones[J]. Annals of Botany, 2019, 124(5): 749-767.

    Google Scholar

    [34] ZHU L, HU J, ZHU K M, et al. Identification and Characterization of SHORTENED UPPERMOST INTERNODE 1, a Gene Negatively Regulating Uppermost Internode Elongation in Rice[J]. Plant Molecular Biology, 2011, 77(4): 475.

    Google Scholar

    [35] WANG Y X, SHANG L G, YU H, et al. A Strigolactone Biosynthesis Gene Contributed to the Green Revolution in Rice[J]. Molecular Plant, 2020, 13(6): 923-932.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)  /  Tables(3)

Article Metrics

Article views(1073) PDF downloads(98) Cited by(0)

Access History

Identification and Map-based Cloning of Multi-tillering Dwarf Mutant mtd2/htd1-1 in Rice (Oryza sativa L.)

    Corresponding author: SANG Xianchun

Abstract: 

Plant height is an important factor of plant architecture, and tillering is the basis for the formation of effective panicle. Both of them are important agronomic traits of rice. To study the molecular mechanism of plant height and tiller development, we used EMS to mutate the maintainer line Xida 1B, and identified a multi-tillering and dwarf mutant named mtd2. Compared with wild-type (WT) Xida 1B, mtd2 had 6.25 times more tillers than WT, and plant height was 49.12 cm, only 59.4% of WT. In addition, mtd2 had smaller panicles and shorter leaves. Genetic analysis showed that mutant phenotypes of mtd2 with increased tillers and plant dwarf was co-segregated and regulated by single recessive nuclear genes. Using the F2 recessive population of mtd2 and Jinhui 10 crossing, the MTD2 gene was finally fine-positioned within a physical distance of 157 kb on chromosome 4 between molecular markers C04-2 and C04-3. Bioinformatics analysis revealed that the mapping interval contained a cloned gene LOC_Os04g46470-HTD1(HTD1). DNA sequencing revealed an 11-base deletion in the HTD1 coding region, which caused a frameshift mutation. The complementary vector was constructed and transformed into mutant mtd2. The dwarf and multi tiller phenotype of mtd2 returned to normal, proving that mtd2 is a new allelic mutant of htd1. Cytological analysis showed that the increase of tiller number in mtd2 was due to the rapid development of tiller buds, which led to more tiller buds. In addition, the qRT-PCR results indicated that MTD2 may be involved in the regulatory network of tillering bud development related to strigolactones (SLs), which laid the foundation for further identification of the function of MTD2/HTD1 genes.

  • 开放科学(资源服务)标识码(OSID):

  • 有效穗、每穗实粒数和千粒质量是水稻产量构成的3大要素,其中有效穗由分蘖数直接决定,因此研究分蘖发育机理具有重要的生物学意义和应用价值. 与双子叶植物相对应,水稻分蘖可以看作是其茎秆上发生的分枝,一级分蘖直接形成于水稻茎秆基部的分蘖节,二级分蘖则产生于一级分蘖茎秆基部的分蘖节,依次类推[1]. 水稻分蘖发育可分为两个阶段:分蘖芽的形成和分蘖芽的伸长[2-3]. 水稻分蘖芽发育始于叶腋处,通常仅有位于根部和非伸长节间的腋芽才能正常发育成分蘖芽,并最终形成有效穗[4].

    水稻分蘖数既受环境因素的影响,也受内源基因的调控[5]. 环境因素主要有温度、光照、营养和水分等,基因调控则涉及糖、生长素(IAA)、独脚金内酯(SLs)等多种代谢和信号传导途径[6-8]. 以营养元素为例,孙祥武等[9]探讨不同比例的氮磷钾掺混肥对分蘖的影响,结果表明氮元素在水稻分蘖期起核心作用. 蒋彭炎等[10]通过实验揭示了水稻幼苗期含氮量和分蘖之间的相关性,当水稻幼苗期含氮量保持在2.7%~3.3%之间时,分蘖发生才能正常进行;当其值低于1.3%时,分蘖芽的发育就只会进行到3幼1基阶段. 处于分蘖期的水稻植株含磷量低于0.3%,分蘖芽则不会伸长发育;分蘖期间水稻植株含钾量如果低于0.5%,分蘖芽的伸长发育就会受阻;含钾量介于0.5%~1.4%之间分蘖芽的伸长发育正常[11].

    通过正向遗传学和反向遗传学,目前已经克隆了许多水稻分蘖数发育的相关基因(https://www.ricedata.cn/gene/). MONOCULM 1(MOC1)是水稻中克隆的第1个调控分蘖芽形成的关键基因,编码1个GRAS转录因子[12]MONOCULM 3(MOC3)编码1个WOX蛋白家族的转录抑制因子[13]FLORAL ORGAN NUMBER 1(FON1)则编码1个与拟南芥中CLAVATA1(CLV1)同源的受体激酶,fon1的表型主要集中在花器官的发育异常上[14]. 研究发现FON1在水稻腋生分生组织中也高度表达,突变后尽管能形成正常的分蘖芽,但是芽向外伸长有缺陷,从而导致分蘖数减少. 在moc1moc3突变体中发现FON1的表达水平显著降低,MOC3蛋白能直接结合FON1的启动子,激活后者表达. MOC1蛋白尽管不能直接结合FON1启动子,但作为MOC3蛋白的共激活因子,可以和MOC3蛋白共同激活FON1的表达,促进分蘖芽的正常伸长[15]. 大量的实验及研究证明,激素对分蘖发育也会产生影响. IAA可以阻止OsIPT的表达以此降低细胞分裂素(CKs)的水平来抑制水稻分蘖芽的发育[16],外源IAA还可以提高D10D17D27的表达量以增加SLs的含量[17]. 此外,负责降解CKs的CKX家族基因也受到IAA的调控[18]. 近年来SLs作为激素调节分蘖的分子机制已成为研究热点. 在由SLs调控的水稻分蘖通路中,TB1是一个作用于SLs下游的基因,其编码1个TCP家族的转录因子,抑制水稻侧芽的伸出,从而负调控水稻的分蘖数. 过量表达OsTB1则会造成分蘖数显著减少. TB1功能丧失型突变体fc1的分蘖数会显著增加[19]. IPA1蛋白能与OsTB1的启动子直接结合,抑制水稻分蘖发生,也是一个负向调控分蘖的转录因子[20]. 此外,IPA1还作为D53的下游直接调控元件,可诱导SLs的基因表达[21]. D10编码类胡萝卜素裂解双加氧酶OsCCD8,是SLs生物合成过程中的重要参与酶之一. OsCCD8通过SLs控制水稻侧芽向外生长,最终造成d10突变体株高变矮,分蘖增多[22]. D27蛋白是参与SLs生物合成的一个成员,其突变之后造成植株株高矮化,分蘖数增多. d27突变体中生长素极性运输增强,在根部分泌液中检测不到SLs,导致分蘖芽向外生长的抑制作用被解除,因此出现多分蘖的表型[23]. T20编码1个15-顺式-ζ-胡萝卜素异构酶,参与SLs前体物质类β胡萝卜素的合成,致使其突变体t20体内的β胡萝卜素和SLs的含量降低,表现为株高变矮,分蘖增多[24]. HIGH TILLERING DWARF1(HTD1)编码1个SLs生物合成过程中重要的酶—胡萝卜素裂解双加氧酶OsCCD7,该酶是SLs调控分蘖途径中重要的一员[25]. MTD1编码蛋白酶抑制因子,通过调控OsmiR156f的表达进而调节株高和分蘖数[26]OsmiR156f过表达植株表现为矮化多蘖[27].

    目前水稻分蘖发育尽管已有一定的分子基础,但其调控网络尚不清晰. 克隆新基因或者等位基因,对于研究其功能和选育水稻高产优产的种质资源具有重要的意义.

1.   材料与方法
  • 矮化多蘖突变体mtd2来源于西南大学水稻研究所籼稻保持系西大1B的甲基磺酸乙酯(EMS)诱变体库,突变表型已稳定遗传. 配制mtd2与西大1B杂交组合用于遗传分析,利用mtd2与缙恢10号的F2隐性群体进行基因定位. 所用材料均种植于西南大学水稻研究所歇马田间试验基地(重庆北碚),常规管理.

  • 水稻田间播种后,全生育期观察其分蘖数和株高变化;成熟后,随机取10株mtd2突变体和10株西大1B野生型,对株高、节间长度、穗长、有效穗、结实率、穗粒数、千粒质量等农艺性状进行考种,并进行统计分析.

  • 取4叶期野生型与突变体幼苗,去除根部和多余叶鞘,留下1 cm左右包含分蘖芽的组织于体式显微镜下观察. 材料经过固定、脱水、透明、浸蜡包埋于石蜡中,纵向切片,再经过脱蜡、复水、染色等步骤制成石蜡切片,于微分干涉差显微镜(DIC)下观察.

  • 选取F2群体中隐性单株为定位群体,采用BSA法筛选连锁标记[28]. CTAB法[29]提取亲本、基因池和定位单株DNA. 利用SSR引物进行初步定位,并构建遗传图谱. 基因初步定位后,在区间内继续设计SSR和InDel引物,利用全部F2隐性单株数进行精细定位,所用引物序列见表 1. PCR产物经10%非变性聚丙烯酰胺凝胶电泳,快速银染后观察.

    为确定候选基因,取突变体mtd2和西大1B新鲜叶片,送至诺禾致源生物科技有限公司进行全基因组测序,利用IGV软件查找精细定位区间内注释基因的碱基差异,从而初步判定候选基因.

    确定候选基因后,将候选基因的野生型基因组全长DNA,包含启动子区域2 000 bp以及3′端500 bp连入pCAMBIA1301,构建互补载体;后由武汉伯远生物科技有限公司将互补载体转化为突变体,形成互补转基因植株.

  • 取4叶期野生型与突变体幼苗,提取分蘖芽总RNA,然后体外反转录成cDNA. 利用qRT-PCR分析调控分蘖相关基因在野生型与突变体中的表达差异. 所用引物见表 1.

2.   结果与分析
  • 相同常规田间种植条件下,我们发现灌浆期突变体mtd2分蘖数为70.00±15.11个,远高于野生型的11.20±5.26个,相差约6.25倍,差异有统计学意义(p<0.01)(图 1a1f);有效穗数29.00±8.54个,较野生型9.80±4.08个相差约3倍,差异有统计学意义(p<0.05)(图 1g). mtd2的株高为49.12±1.79 cm,极显著低于野生型82.70±4.33 cm(图 1a1h),仅为野生型的59.40%. 成熟期统计分析发现,mtd2的倒1节间长18.26±2.03 cm,倒2节间长9.47±1.50 cm和倒3节间长4.31±0.98 cm都明显短于野生型的31.8±3.35 cm,19.23±1.39 cm和6.27±1.12 cm (图 1b1j);倒1节间长和倒2节间长较野生型差异有统计学意义(p<0.01),倒3节间长差异也有统计学意义(p<0.05),而倒4节间长差异无统计学意义,这些节间长度的差异导致突变体株高矮化. mtd2穗长14.80±0.90 cm也短于野生型22.82±0.60 cm(图 1c1i). 除此之外,成熟期mtd2的倒1叶、倒2叶和倒3叶的叶片长度较野生型更短(图 1d1k),叶片宽度也更窄(图 1e1l).

  • 表 2可知,mtd2的结实率较野生型差异无统计学意义,但由于一次枝梗数和二次枝梗数的减少,其穗粒数极显著减少,由野生型平均139.20粒降低为72.20粒. 此外,mtd2籽粒的粒长、粒宽和粒厚变化有统计学意义,致使千粒质量下降,但mtd2相较于野生型产生了更多的有效穗(图 1g),使单株产量远超野生型.

  • 水稻分蘖数增多主要有两方面原因:一是分蘖芽数量增多,二是侧生分生组织活跃导致分蘖芽提前伸长. 为了探究mtd2分蘖数量增多的具体原因,我们对4叶期也就是侧生分生组织发育时期的幼苗茎基部进行了体式显微镜观察. 在去除外层叶鞘后发现野生型的外侧分蘖芽尚未发育(图 2a),但突变体的分蘖芽已经伸长(图 2b);而后对4叶期野生型和mtd2的幼苗茎基部进行石蜡切片观察,发现野生型在此时期有2个分蘖芽(图 2c),mtd2则有5个分蘖芽(图 2d),并且外侧4个分蘖芽均已开始发育变长. 综上表明mtd2不仅分蘖芽的数量变多,而且侧生分生组织也变得活跃.

  • 将配制的mtd2/西大1B,mtd2/缙恢10号的F1和F2群体种植在水稻田里,全生育期进行表型观察. 结果发现,F1群体均表型正常,没有出现矮化、多蘖植株;两个杂交组合的F2群体,株型性状产生了严重的分离. 以矮化多蘖为判断标准,471株mtd2/西大1B的F2群体中,341个正常株,130个突变株;1 599株mtd2/缙恢10号的F2群体中,1 213个正常株和386个突变株. 卡方检验表明两个群体中正常株与突变株的分离比均符合3∶1(X2=1.56<X0.052=3.84;X2=0.59<X0.052=3.84). 这些结果显示,mtd2的矮化多蘖性状受1对隐性核基因调控.

  • 以390株mtd2/缙恢10号的F2隐性单株为定位群体进行基因定位,所用引物为实验室前期筛选出的西大1B和缙恢10号之间的差异引物[30]. 从F2群体中选择10株典型矮化多蘖单株,利用亲本间的差异引物进行PCR扩增,统计带纹数,计算交换值. 结果发现SSR标记RM17407交换值为10%,暗示其可能与MTD2连锁. 以RM17407为中心,在其两端设计Indel和SSR标记,以同样的10株典型矮化多蘖单株DNA为模板进行扩增,结果发现Indel标记C04-1的交换值为15%,且交换株与RM17407不同,从而初步将MTD2限定在第4染色体标记C04-1和RM17407之间.

    为精细定位目标基因,在初步定位区间内设计新的Indel标记,其中C04-2和C04-3在西大1B和缙恢10号之间具有多态性. 利用C04-1,C04-2,C04-3和RM17407共4对差异引物对390株mtd2/缙恢10号的F2隐性单株进行电泳分析,结果发现其交换株分别为16,3,4和19个,且前两个标记的交换株与后两个不同,从而最终将MTD2限定在水稻第4染色体Indel标记的C04-2和C04-3之间157 kb的物理范围内(图 3a).

    生物信息学分析发现定位区间内有28个注释基因(表 3),其中就有已报道的多孽矮杆基因LOC_Os04g46470-HTD1,编码1个类胡萝卜素裂解双加氧酶. 随后利用野生型(WT)和mtd2的全基因组测序,在IGV软件上查找LOC_Os04g46470-HTD1碱基差异,发现LOC_Os04g46470-HTD1在编码区有1个AGATTCCTCCC共计11 bp的缺失,从而导致移码突变(图 3b). 进一步分析发现,相较于野生型全长609个氨基酸,该移码突变导致HTD1在509位后编码的所有氨基酸均发生了改变,全长则变为604个氨基酸(图 3c),所以我们初步将LOC_Os04g46470-HTD1定为MTD2的候选基因. 将野生型中包含2 000 bp启动子和3′端500 bp的全长LOC_Os04g46470-HTD1基因组DNA导入突变体mtd2中,发现阳性转基因植株mtd2com的株高和分蘖数均回复至野生型水平(图 3d),因此,我们确认该突变体的表型是由mtd2/htd1的突变导致,并且mtd2LOC_Os04g46470-HTD1的一个全新等位突变体.

  • 为了探究MTD2在分蘖调控网络中的作用,我们进行了分蘖相关基因的qRT-PCR分析(图 4). TB1IPA1D10D27T20均是独角金内酯(SLs)调控分蘖通路中的关键基因. TB1IPA1D10在qRT-PCR结果中相较于野生型(WT)均出现下调趋势,这与它们在SLs调控分蘖通路中起负调控的作用相吻合,也证实了MTD2/HTD1确实是由SLs介导的分蘖调控途径. 另外D27T20虽然也是SLs通路中的成员,D27是通过生长素运输抑制SLs运输,T20是合成SLs前体物质β胡萝卜素的重要基因,但两者在qRT-PCR结果中未出现明显变化. 另外FON1MOC1MOC3是调控分蘖的经典基因,三者在mtd2中的表达量均明显上调,表明MTD2也可能参与此三者的通路进而影响分蘖. TAD1通过赤霉素(GA)和脱落酸(ABA)信号降解MOC1来调控分蘖,在mtd2中呈下调趋势. 此外影响表达量下调的还有一个生长素运输基因OsPIN1b,暗示MTD2可能也通过生长素调控分蘖.

3.   讨论与结论
  • 独脚金内酯(SLs)是近年来发现的、由类胡萝卜素衍生而来的一类新型植物激素. 最早发现SLs能诱导种子萌发、促进丛枝菌的根生长和抑制植物分枝,后来发现其在叶片衰老、生物胁迫和非生物胁迫等方面也发挥着重要的作用[31]. 以拟南芥、水稻等为材料,已鉴定出30多种不同结构的SLs分子,在SLs生物合成、转运及信号传导等方面均取得了系列研究进展[32]. 研究发现,SLs合成及信号传导与生长素(IAA)、细胞分裂素(CK)、赤霉素(GA)、脱落酸(ABA)、茉莉酸(JA)、乙烯、水杨酸等其他植物激素存在广泛的交叉互作[33].

    在水稻等农作物中,SLs通过抑制侧芽的伸长进而控制分蘖的发育,从而形成有效穗. 理论上,干扰SLs的合成和信号传导途径有望塑造育种需要的理想株型,而长期以来,SLs相关基因在育种中的利用还很不清晰. HTD1/D17编码胡萝卜素裂解双加氧酶OsCCD7,是类胡萝卜素裂解合成独脚金内酯过程中的1个关键酶,负调节水稻分蘖数[24-25]. 研究发现,HTD1/D17部分功能缺失等位基因可显著增加分蘖数,进而提高水稻产量,在水稻生产中得到了广泛应用. 本文通过图位克隆鉴定到1个HTD1的新等位基因MTD2MTD2HTD1编码区中有1个11碱基的缺失,导致移码突变,致使509位后翻译的氨基酸完全错乱,并在翻译95个氨基酸后终止. mtd2HTD1的缺失位点发生在基因相对靠后的位置,这为研究HTD1的C端功能提供了条件. 对分蘖相关基因进行qRT-PCR分析,结果发现除了参与SLs途径的基因表达量发生变化外,FON1MOC1MOC3表达量上调,TAD1PIN1表达量下调(图 4). MOC1-MOC3-FON1途径通过调控分蘖芽的生长调控分蘖数,FON1功能丧失突变体能形成正常的芽,但芽向外伸长有缺陷,导致分蘖数减少[13]. TAD1通过泛素-26S蛋白酶体途径降解MOC1,从而调控分蘖数,其功能缺失突变体表现出多蘖性状.

    许多基因具有“一因多效”的功能,如SUI1,其功能缺失突变体sui1-1穗颈节间变短且部分包穗,sui1-2突变体穗颈节间极度变短导致完全包穗. smg2除部分包穗外,还表型小籽粒等[28, 34]. HTD1同样具有一因多效性,大多功能缺失突变体表现为多蘖和植株半矮化,部分功能缺失突变体表现为株高略矮、分蘖能力增强,来自皮泰的HTD1HZ与来自低脚乌尖的SD1DGWG同时被育种家选择并利用,促进了籼型水稻育种的“绿色革命”[35]. 与已报道的htd1等位突变体相比,mtd2穗与各节间均极显著变短,穗粒数和千粒质量也极显著下降,但由于有效穗极显著增加而结实率无明显变化,导致单株产量提高约45%(表 2). 由于mtd2来自籼稻保持系西大1B的EMS诱变,生育期只有90 d左右,因此mtd2在工厂化种植及太空利用等方面具有重要的应用价值.

    综上所述,mtd2是一个新鉴定到的HTD1等位突变体,其单株产量提高和多蘖矮化等性状为种质资源创制和分蘖的分子机制挖掘提供了新材料.

Figure (4)  Table (3) Reference (35)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return