Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2024 Volume 46 Issue 8
Article Contents

CHEN Yifeng, TAN Liping, YANG Chunxue, et al. Screening of Key Genes for Villitis of Unknown Etiology[J]. Journal of Southwest University Natural Science Edition, 2024, 46(8): 45-53. doi: 10.13718/j.cnki.xdzk.2024.08.005
Citation: CHEN Yifeng, TAN Liping, YANG Chunxue, et al. Screening of Key Genes for Villitis of Unknown Etiology[J]. Journal of Southwest University Natural Science Edition, 2024, 46(8): 45-53. doi: 10.13718/j.cnki.xdzk.2024.08.005

Screening of Key Genes for Villitis of Unknown Etiology

More Information
  • Received Date: 14/04/2024
    Available Online: 20/08/2024
  • MSC: Q987;R711

  • Objective of this study is to analyze the possible development mechanisms of villitis of unknown etiology (VUE) and the screening of target genes that play a key role in the disease. Gene expression profile data of VUE patients and healthy individuals were downloaded from the Gene Expression Omnibus (GEO). Bioinformatics methods were applied to perform a weighted correlation network analysis (WGCNA) and gene differential expression analysis to identify key VUE genes. The Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to discover the possible mechanisms of action. Key VUE genes were further screened by protein-protein interactions (PPI) to identify core VUE target genes. Finally, the core target genes were analyzed by ROC curve and univariate logistic regression. By WGCNA analysis and gene differential expression analysis, 206 VUE core genes were identified. Functional analysis found that these core VUE genes were mainly enriched in the negative regulation of the transmembrane receptor protein serine/threonine, cellular structural organization and extracellular matrix structural components, while the enriched pathways mainly included Hippo signaling pathway, TGF signaling pathway and Wnt signaling pathway. 10 VUE core target genes were selected from 206 key genes. Finally, the analysis of the 10 core target genes found that they all could be used as independent factors to identify VUE, and 9 genes showed a significant negative correlation with the risk of developing VUE. This study found several possible mechanisms of the occurrence and development of VUE, and MRPL13, FBN1, CTGF, SLC2A10, SLIRP, CAV1, WNT5A, VAMP7, PPP1CB and VBP1 are expected to become biomarkers for the diagnosis and treatment of VUE.

  • 加载中
  • [1] OSBORNE B, DANCEY S R, MERY E, et al. Impact of Villitis of Unknown Etiology and Adverse Acute Neonatal Outcomes in Eastern Ontario [J]. Placenta, 2023, 144: 23-28. doi: 10.1016/j.placenta.2023.11.001

    CrossRef Google Scholar

    [2] DE KONING L, CRAWFORD S, NOHR E, et al. Recurrence Risk of Villitis of Unknown Etiology: Analysis of a Large Retrospective Cohort Study, Systematic Review and Meta-Analysis [J]. Placenta, 2022, 120: 32-39. doi: 10.1016/j.placenta.2022.02.006

    CrossRef Google Scholar

    [3] ENNINGA E A L, LEONTOVICH A A, FEDYSHYN B, et al. Upregulation of HLA-Class Ⅰ and Ⅱ in Placentas Diagnosed with Villitis of Unknown Etiology [J]. Reproductive Sciences, 2020, 27(5): 1129-1138. doi: 10.1007/s43032-019-00101-9

    CrossRef Google Scholar

    [4] NARICE B F, TRZESZCZ M, COHEN M, et al. Acute Villitis and Intravascular Microorganisms in Fetal Vessels: A Case Report and Literature Review of an Unusual Histopathological Finding [J]. Pediatric and Developmental Pathology, 2021, 24(3): 246-251. doi: 10.1177/1093526621993333

    CrossRef Google Scholar

    [5] FREEDMAN A A, GOLDSTEIN J A, MILLER G E, et al. Seasonal Variation of Chronic Villitis of Unknown Etiology [J]. Pediatric and Developmental Pathology, 2020, 23(4): 253-259. doi: 10.1177/1093526619892353

    CrossRef Google Scholar

    [6] IP S, GRIFFIN A, LOURIE R, et al. Chronic Villitis of Unknown Aetiology: An Australian Institution's 5-Year Experience [J]. Pathology, 2022, 54(7): 882-887. doi: 10.1016/j.pathol.2022.03.015

    CrossRef Google Scholar

    [7] CHIN C H, CHEN S H, WU H H, et al. CytoHubba: Identifying Hub Objects and Sub-Networks from Complex Interactome [J]. BMC Systems Biology, 2014, 8(4): S11.

    Google Scholar

    [8] LANGFELDER P, HORVATH S. WGCNA: An R Package for Weighted Correlation Network Analysis [J]. BMC Bioinformatics, 2008, 9: 559. doi: 10.1186/1471-2105-9-559

    CrossRef Google Scholar

    [9] 张飞飞, 袁红, 谢映春, 等. 骨髓增生异常综合征的特征基因筛选及分析[J]. 国际检验医学杂志, 2023, 44(17): 2122-2128.

    Google Scholar

    [10] RITCHIE M E, PHIPSON B, WU D, et al. Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies [J]. Nucleic Acids Research, 2015, 43(7): e47. doi: 10.1093/nar/gkv007

    CrossRef Google Scholar

    [11] KIM C J, ROMERO R, CHAEMSAITHONG P, et al. Chronic Inflammation of the Placenta: Definition, Classification, Pathogenesis, and Clinical Significance [J]. American Journal of Obstetrics and Gynecology, 2015, 213(S4): 53-69.

    Google Scholar

    [12] MEKINIAN A, KOLANSKA K, CHELOUFI M, et al. Chronic Villitis of Unknown Etiology (VUE): Obstetrical Features, Outcome and Treatment [J]. Journal of Reproductive Immunology, 2021, 148: 103438. doi: 10.1016/j.jri.2021.103438

    CrossRef Google Scholar

    [13] GOLDSTEIN J A, GALLAGHER K, BECK C, et al. Maternal-Fetal Inflammation in the Placenta and the Developmental Origins of Health and Disease [J]. Frontiers in Immunology, 2020, 11: 531543. doi: 10.3389/fimmu.2020.531543

    CrossRef Google Scholar

    [14] HASHEMI R, PEYMANI M, GHAEDI K, et al. In Silico Identification of the Specific Pathways in each Stage of Colorectal Cancer and the Association of Their Top Genes with Drug Resistance and Sensitivity [J]. Medical Oncology, 2022, 39(5): 57. doi: 10.1007/s12032-022-01661-8

    CrossRef Google Scholar

    [15] SINHA A, IYENGAR P V, TEN DIJKE P. E3 Ubiquitin Ligases: Key Regulators of TGFΒ Signaling in Cancer Progression [J]. International Journal of Molecular Sciences, 2021, 22(2): 476. doi: 10.3390/ijms22020476

    CrossRef Google Scholar

    [16] ERNST L M, BOCKOVEN C, FREEDMAN A, et al. Chronic Villitis of Unknown Etiology: Investigations into Viral Pathogenesis [J]. Placenta, 2021, 107: 24-30. doi: 10.1016/j.placenta.2021.02.020

    CrossRef Google Scholar

    [17] DU H L, LI Y, PANG S, et al. Development and Validation of a Prognostic Model Based on RNA Binding Proteins in Patients with Esophageal Cancer [J]. Journal of Thoracic Disease, 2023, 15(11): 6178-6191. doi: 10.21037/jtd-23-1307

    CrossRef Google Scholar

    [18] DUAN G L, HUANG C X, ZHAO J G, et al. Investigating Subtypes of Lung Adenocarcinoma by Oxidative Stress and Immunotherapy Related Genes [J]. Scientific Reports, 2023, 13(1): 20930. doi: 10.1038/s41598-023-47659-8

    CrossRef Google Scholar

    [19] ZHANG K, ERNST L, SCHOBERT I, et al. Is Marfan Syndrome Associated with Primary Structural Changes in the Left Atrium? [J]. Diagnostics, 2023, 13(20): 3278. doi: 10.3390/diagnostics13203278

    CrossRef Google Scholar

    [20] OLANIYI K S, ARELOEGBE S E, FIEMOTONGHA F E. Cardiac Energy Depletion in a Rat Model of Polycystic Ovarian Syndrome is Reversed by Acetate and Associated with Inhibitory Effect of HDAC2/mTOR [J]. European Journal of Pharmacology, 2024, 962: 176243. doi: 10.1016/j.ejphar.2023.176243

    CrossRef Google Scholar

    [21] EKHATOR C, DEVI M, BARKER C, et al. Arterial Tortuosity Syndrome: Unraveling a Rare Vascular Disorder [J]. Cureus, 2023, 15(9): e44906.

    Google Scholar

    [22] AIBARA S, SINGH V, MODELSKA A, et al. Structural Basis of Mitochondrial Translation [J]. eLife, 2020, 9: e58362. doi: 10.7554/eLife.58362

    CrossRef Google Scholar

    [23] GUO L X, LIU Y X, YANG T, et al. CAV1 and KRT5 are Potential Targets for Prostate Cancer [J]. Medicine, 2023, 102(49): e36473. doi: 10.1097/MD.0000000000036473

    CrossRef Google Scholar

    [24] 张可莹, 李小燕, 刘旭霞, 等. 妊娠合并主动脉夹层的临床及遗传学分析[J]. 中国妇幼健康研究, 2023, 34(10): 70-74.

    Google Scholar

    [25] 张阔, 陈莹, 刘丹, 等. 甲基化SIM2、GNA12、CTGF在子痫前期孕妇中表达水平及其对疾病的预测价值[J]. 国际检验医学杂志, 2024, 45(1): 44-48.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(1099) PDF downloads(337) Cited by(0)

Access History

Screening of Key Genes for Villitis of Unknown Etiology

Abstract: 

Objective of this study is to analyze the possible development mechanisms of villitis of unknown etiology (VUE) and the screening of target genes that play a key role in the disease. Gene expression profile data of VUE patients and healthy individuals were downloaded from the Gene Expression Omnibus (GEO). Bioinformatics methods were applied to perform a weighted correlation network analysis (WGCNA) and gene differential expression analysis to identify key VUE genes. The Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to discover the possible mechanisms of action. Key VUE genes were further screened by protein-protein interactions (PPI) to identify core VUE target genes. Finally, the core target genes were analyzed by ROC curve and univariate logistic regression. By WGCNA analysis and gene differential expression analysis, 206 VUE core genes were identified. Functional analysis found that these core VUE genes were mainly enriched in the negative regulation of the transmembrane receptor protein serine/threonine, cellular structural organization and extracellular matrix structural components, while the enriched pathways mainly included Hippo signaling pathway, TGF signaling pathway and Wnt signaling pathway. 10 VUE core target genes were selected from 206 key genes. Finally, the analysis of the 10 core target genes found that they all could be used as independent factors to identify VUE, and 9 genes showed a significant negative correlation with the risk of developing VUE. This study found several possible mechanisms of the occurrence and development of VUE, and MRPL13, FBN1, CTGF, SLC2A10, SLIRP, CAV1, WNT5A, VAMP7, PPP1CB and VBP1 are expected to become biomarkers for the diagnosis and treatment of VUE.

  • 开放科学(资源服务)标识码(OSID):

  • 胎盘是女性怀孕的关键器官,其发育异常或功能障碍将增加流产、早产和死产等不良妊娠结局的发生风险[1]. 在女性妊娠过程中胎盘常发生炎症性改变,即胎盘绒毛炎[2]. 研究发现,胎盘绒毛炎的发生会导致产妇在围产期感染风险增加,也会对胎儿和新生儿健康产生严重影响[3]. 关于导致胎盘绒毛炎发生的病因,已有研究表明部分绒毛炎的发生是由细菌感染引起[4]. 然而,大多数的绒毛炎病例到目前为止还没有明确的病因,这些病例被定义为病因不明绒毛炎(Villitis of Unknown Etiology,VUE)[5]. 据调查,在发达国家中VUE占所有胎盘绒毛炎病例的95%左右[6]. 而VUE的发生可能会导致母体与胎儿间产生排斥反应,增加流产风险[3]. 因此,VUE的早期发现和诊断对于女性妊娠安全和胎儿健康均具有重要意义. 但VUE发生发展的具体作用机制尚未明确,且缺乏在VUE发病过程中起关键作用的基因识别.

    由于疾病的发生通常受一些异常表达基因的调控,这些基因直接或间接地负责疾病的发生与发展[7-8]. 因此,识别出VUE的特异性核心靶基因有助于发现VUE发病的作用机制,进而为治疗VUE提供理论基础和科学依据. 随着测序技术的发展,生物信息学分析已被广泛应用于识别基因表达特征与疾病之间的相互作用. 然而,尚未有研究者使用生物信息学分析发现VUE发生发展相关的疾病特异性生物标志物. 近年来,大规模的基因组图谱提供了基因表达数据,为识别VUE的特异性核心靶基因提供了极好的机会. 因此,本研究旨在从生物信息学分析的角度找出VUE的特异性核心靶基因,为VUE的进一步研究提供参考.

1.   材料与方法
  • 本研究所用数据下载自美国国家生物技术信息中心(National Center for Biotechnology Information,NCBI)的基因表达综合数据库(Gene Expression Omnibus,GEO) (https://www.ncbi.nlm.nih.gov/geo/). 下载VUE基因表达数据集GSE130856[3],其中病例组包括20个患有VUE的胎盘组织样本,正常对照组包括与病例组胎龄完全匹配的9个正常胎盘组织样本. GSE130856基因表达谱阵列基于GPL570[HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array软件进行分析.

  • 从GEO数据库中下载原始数据,然后用R统计软件(版本4.2.3,https://www.r-project.org/)和生物导体分析工具(https://www.bioconductor.org/)进行预处理和归一化. 应用“affy”R语言包进行RMA背景校正、完全log2变换、分位数归一化和中值优化,并排除没有匹配基因符号的探针. 对映射到同一基因的多个探针,取平均值作为最终的表达值.

  • 使用“WGCNA” R语言包对标准化处理后的基因表达数据集进行基因共表达模块分析,筛选出关键基因. ① 通过对基因相关系数取n次幂的方式计算任意两个基因之间的相关系数,并以合适的软阈值构建无标度邻接网络. ② 将邻接网络转化为拓扑重叠矩阵(Topological Overlap Matrix,TOM)来计算基因之间的关系. ③ 再基于TOM值的相异度对基因构建层次聚类树,筛选出连接度高的基因并定义为模块. ④ 通过模块与疾病状态的相关系数及p值绘制模块与疾病的相关性热图,并计算基因与模块之间的相关性(Module Membership,MM)和基因的重要性(Gene Signicance,GS)[9].

  • 使用“limma”R语言包[10]对标准化后的数据集进行差异表达基因分析. 将p<0.05和|log2FC|≥1设为识别VUE差异表达基因(Differentially expressed genes,DEGs)的阈值,然后通过“ggplot2”R语言包(https://ggplot2.tidyverse.org)绘制热图和火山图进行可视化.

  • 使用“org.Hs.eg.db”R语言包(https://www.bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html)对数据集进行基因本体论(Gene Ontology,GO)以及京都基因和基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)分析,p<0.05视为有统计学意义,并使用“enrichplot”R语言包(https://yulab-smu.top/biomedical-knowledge-mining-book/)进行GO和KEGG的可视化.

  • 将筛选出的关键VUE基因导入基因/蛋白相互作用检索搜查工具(Search Tool for the Retrieval of Interacting Genes/Proteins,STRING)数据库(https://www.string-db.org/),获得PPI网络,然后将PPI网络导入Cytoscape软件(版本3.9.1)进行可视化. 使用CytoNCA插件计算平均中介中心度值. 中介中心度是一个结点担任其他两个结点之间最短桥梁的次数,其值越大,说明基因所处位置越接近核心[7]. 通过此方法,筛选出前10个最为核心的VUE基因.

  • 通过构建受试者工作特征(Receiver Operating Characteristic,ROC)曲线探讨核心靶基因作为诊断VUE可能性大小的依据. 利用IBM SPSS Statistics 27.0软件,采用单因素逻辑回归分析方法计算10个核心VUE靶基因表达与VUE风险之间的比值比(Odds Ratio,OR)和95%置信区间(Confidence Interval,CI).

  • 研究中的所有统计分析均由R软件和IBM SPSS Statistics 27.0软件执行,其中单因素逻辑回归分析方法选择“输入”. 基因表达水平的组间比较采用t检验,检验水准α=0.05,p<0.05为具有统计学意义的阈值.

2.   结果与分析
  • 首先,在构建无标度网络和基因连接的过程中,既要保证网络接近无尺度分布,又要保证网络平均连通性不会太小,本研究设置无标度区域值大于0.7,最佳软阈值为9(图 1a). 随后,将相似基因进行合并,共得到4种颜色模块(图 1b). 然后,分析模块与临床性状的相关性,发现蓝色模块的相关性最强,与VUE呈负相关(r=-0.72,p=2e-05)(图 1c). 最后,将蓝色模块按基因重要性(>0.5)和基因与模块相关性(>0.8)筛选出关键模块内的关键基因共1 685个(图 1d图 1e).

  • 通过R对VUE数据集进行基因差异表达分析,以p<0.05和|log2FC|≥1为阈值获得了257个DEGs,在VUE数据集中的表达情况如热图和火山图所示(图 2),其中有53个基因表达上调,204个基因表达下调.

  • 为了鉴定可能对VUE的发生发展产生关键作用的核心基因,将WGCNA分析筛选出的1 685个VUE关键基因与差异表达分析筛选出的257个VUE关键基因绘制维恩图,发现206个交集基因(图 3a),本研究将其定义为核心VUE基因. 对其进行GO和KEGG分析,发现这些核心VUE基因主要在跨膜受体蛋白丝氨酸/苏氨酸的负调控、细胞结构组织和细胞外基质结构成分等功能上富集(图 3b),而富集通路主要包括Hippo信号通路、TGF-信号通路和Wnt信号通路等(图 3c).

  • 为了探讨206个核心VUE基因中发挥主要作用的靶基因,利用PPI网络构建方法进行VUE核心靶基因筛选. 首先根据STRING数据库构建206个核心VUE基因的PPI网络,其中99个基因互相连接,选择其中有61个基因参与连接的网络进行分析(图 4a). 根据Cytoscape软件中计算出的平均中介中心度值大小将基因排序,可以看出MRPL13的平均中介中心度值最大,说明其处于这些基因最核心的位置,与其他基因间的关系最为紧密,其次是FBN1CCN2(又名CTGF),SLC2A10SLIRPCAV1等(图 4b). 本研究选择平均中介中心度值最大的前10个基因(MRPL13FBN1CTGFSLC2A10SLIRPCAV1WNT5AVAMP7PPP1CBVBP1),将其定义为VUE核心靶基因.

  • 在对核心VUE靶基因的表达情况进行分析时,发现在GSE130856数据集中VUE患者相较于正常者这10个核心靶基因全部显著下调(图 5a). 通过受试者工作特征曲线(ROC)检测这10个靶基因能否正确判断VUE样本和正常样本,计算结果显示10个核心靶基因的曲线下面积(Area Under Curve,AUC)值均大于0.5(图 5b),说明筛选出的这10个核心靶基因均可作为区分VUE组和正常组的独立因素. 为了探讨这10个核心靶基因的表达情况与VUE风险之间的关系,我们进行了单因素逻辑回归分析(图 5c),共有9个基因(MRPL13FBN1CTGFSLC2A10CAV1WNT5AVAMP7PPP1CBVBP1)与VUE发生风险呈显著的负相关关系,即均可能为VUE的保护因素.

3.   结论与讨论
  • VUE是一种胎盘慢性炎症性病变,其发病特征是母体T细胞浸润到绒毛膜组织中[11]. 已有研究报道确定了胎盘中VUE病变的存在与母胎耐受性下降、胎儿宫内生长受限和流产等存在显著关联[3]. 关于VUE的发病原因,有研究发现种族、吸烟、肥胖、动脉高血压和糖尿病等已被评估为VUE的可能诱发因素[12]. 此外,根据目前的研究,VUE的发病机制可能主要通过影响T细胞趋化因子(CXCL9,CXCL10和CXCL11)及其受体(CXCR3)在Hofbauer细胞(胎儿来源的胎盘巨噬细胞)、基质细胞和内皮细胞中的表达实现[13];也有研究者发现患有VUE的胎盘富含参与抗原呈递的基因,如Ⅱ类主要组织相容性抗原(HLA-DM,-DO,-DP,-DQ,-DR)以及Ⅰ类分子(HLA-B,-C,-G)的过表达[11]. 然而,已有的研究证据对于确定VUE具体的发病机制还严重不足,在VUE发生发展过程中起关键作用的基因仍未得到充分明确. 基于此,本研究通过生物信息学方法,对VUE发生发展可能的作用机制进行分析,更重要的是对VUE特异性核心靶基因进行识别和筛选.

    本研究通过WGCNA和基因差异表达分析,识别出了257个关键的VUE特异性基因. 通过GO和KEGG分析,发现这257个关键的VUE基因主要在跨膜受体蛋白丝氨酸/苏氨酸的负调控、细胞结构组织和细胞外基质结构成分等功能上富集,而富集通路主要包括Hippo信号通路、TGF信号通路和Wnt信号通路等. 根据其他研究报道,发现跨膜受体蛋白丝氨酸/苏氨酸的负调控、Hippo信号通路、TGF信号通路和Wnt信号通路均在多种恶性肿瘤中具有重要作用[14-15]. 本研究也支持了细胞因子-细胞因子受体相互作用和细胞粘附分子的组成等功能在VUE发病过程中发挥一定作用的结论[16]. 由此可见,我们筛选出的VUE核心基因在疾病发生发展中发挥着重要作用的可能性很大. 然而,大部分功能和通路尚未引起研究者们的关注. 因此,本研究提出上述功能和通路调节异常可能在VUE疾病中扮演着重要角色,为今后关于VUE的机制研究提供了参考方向.

    本研究通过PPI网络进一步筛选得到10个更为核心的VUE特异性靶基因,包括MRPL13FBN1CTGFSLC2A10SLIRPCAV1WNT5AVAMP7PPP1CBVBP1. 其中,MRPL13在人类食管癌、肺腺癌、胃癌等多种恶性肿瘤中的重要作用已被证实[17-18]. FBN1与马方综合征具有紧密关系[19]. CTGF被发现参与了多囊卵巢综合征的发生[20]. 研究发现SLC2A10SLIRPCAV1WNT5AVAMP7PPP1CBVBP1分别与动脉迂曲综合征、线粒体功能、前列腺癌、结肠癌、细胞异常凋亡、呼吸系统疾病和重度抑郁等疾病相关[21-23]. 根据以往的研究,FBN1CTGFCAV1WNT5AVAMP7在女性特异性疾病(如乳腺癌、子痫等)发生发展过程中起着一定的作用[24-25],然而还未发现这些具有重要功能的基因在VUE中起作用的报道. 本研究通过生物信息学分析发现SLC2A10SLIRPCAV1WNT5AVAMP7PPP1CBVBP1与VUE的发生发展密切相关,提示这10个核心VUE基因可能通过影响Hippo信号通路、TGF信号通路、Wnt信号通路、细胞因子-细胞因子受体相互作用和细胞粘附分子的组成等功能对VUE疾病的发生风险产生影响,为VUE的诊断及发病机制提供了新的研究方向.

    本研究对10个VUE核心靶基因进行分析发现,这10个核心靶基因在VUE组中表达水平均显著下调. 通过ROC曲线分析发现筛选出的这10个核心靶基因均可作为区分VUE组和正常组的独立因素. 单因素逻辑回归分析显示MRPL13FBN1CTGFSLC2A10CAV1WNT5AVAMP7PPP1CBVBP1可能为VUE的保护因素,提示我们在往后关于VUE的研究中应重点关注这些基因,因为它们极有可能在VUE发生发展中有着不可忽视的作用.

    本研究利用生物信息学分析方法发现了一些与VUE发生发展相关的机制及关键的靶基因,为VUE的诊断和治疗提供了一定的参考. 然而,本研究也存在一定的局限性. ① 由于公开数据库中VUE基因表达数据集较为稀缺,本研究未在验证过程中利用其他数据来进行功能验证分析,这可能会造成验证结果的过拟合问题. 因此,在以后的研究中应利用多个不同的VUE数据集对这些基因进行验证. ② 本研究缺乏相关细胞、动物和人群等实验来对发现的结果进行验证,今后还需要更多的研究来深入探索这些关键基因与VUE发生发展的关系,以及VUE发生发展的具体作用机制.

Figure (5)  Reference (25)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return