Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2018 Volume 43 Issue 5
Article Contents

JI Hong-wei. Sign-changing Solutions to the nonlinear Sturm-Liouville boundary value problem[J]. Journal of Southwest China Normal University(Natural Science Edition), 2018, 43(5): 17-22. doi: 10.13718/j.cnki.xsxb.2018.05.004
Citation: JI Hong-wei. Sign-changing Solutions to the nonlinear Sturm-Liouville boundary value problem[J]. Journal of Southwest China Normal University(Natural Science Edition), 2018, 43(5): 17-22. doi: 10.13718/j.cnki.xsxb.2018.05.004

Sign-changing Solutions to the nonlinear Sturm-Liouville boundary value problem

More Information
  • Received Date: 20/03/2017
  • In this paper, consider the existence of sign-changing solutions for the nonlinear Sturm-Liouville boundary value problemLφ=fφ, 0 ≤ x ≤ 1αφ(0)-βφ'(0)=0, γφ(1)+δφ'(1)=0Besides, the existence of sign-changing solutions and the more general case of the Hammerstein integral equation are studied, and the general results are obtained, and the previous work is improved.
  • 加载中
  • [1] ZHANG M Z.Regular Approximation of Singular Sturm-Liouville Problems with Tramsmission Conditions[J].Applied Mathematics & Computation, 2014, 247(9):511-520.

    Google Scholar

    [2] MUKHTAROV O S,AYDEMIR.Eigenfunction Expansion for Sturm-Liouville Problems with Tramsmission Conditions at One Ihterior Point[J].Actu Muthematica Scientiu, 2015, 35(3):639-649.

    Google Scholar

    [3] 高婷梅.一类带有凹凸非线性项的p-拉普拉斯方程一对正解的存在性[J].西南师范大学学报(自然科学版), 2015, 40(4):21-26.

    Google Scholar

    [4] WILKENINY J, CENFON A.A Spectral Transform Method for Singular Sturm-Liouville Problems with Applications to Energy Diffusion in Plusma Physics[J].Siam J Appl Math, 2013, 75(2):350-392.

    Google Scholar

    [5] 张兴秋.奇异半正Sturm_Liouville边值问题的多个正解[J]. 应用数学学报, 2013, 36(3):1094-1107.

    Google Scholar

    [6] NI X, GE W. AExistence of Positive Solutions for Boundary Value Problems on the Semi-Infinite Interval[J].Chinese Quarterly Journal of Mathematics Nonlinear, 2005, 20(3):380-384.

    Google Scholar

    [7] 孙经先, 李红玉.奇异非线性Sturm-Liouville边值问题正解的全局结构[J]. 数学物理学报, 2008, 28A(3):424-433.

    Google Scholar

    [8] 李红玉, 孙经先, 崔玉军.双重Hammerstein型积分方程正解的存在性[J].工程数学学报, 2008, 25(5):931-934.

    Google Scholar

    [9] 李红玉, 孙经先, 崔玉军.超线性非线性Sturm-Liouville边值问题的正解[J]. 数学年刊, 2010, 31A(2):183-188.

    Google Scholar

    [10] 张杰.一类Semipositone问题的多个正解[J].西南师范大学学报(自然科学版), 2016, 41(6):31-34.

    Google Scholar

    [11] 杨景保.一类Sturm-Liouville边值问题正解的存在性[J].山东大学学报(理学版), 2010, 45(2):84-89.

    Google Scholar

    [12] 张玲忠, 李永祥.Banach空间非线性Sturm-Liouville边值问题的正解[J].数学物理学报, 2009, 29A(3):784-793.

    Google Scholar

    [13] 张克梅, 孙经先.非线性算子方程变号解的存在性及其应用[J].数学学报, 2003, 46(4):815-822.

    Google Scholar

    [14] 崔玉军, 孙经先.Banach空间非线性Sturm-Liouville问题的解[J].系统科学与数学, 2009, 29(2):208-214.

    Google Scholar

    [15] DEIMLING K.Nonlinear Functional Analysis[M].Beijing:World Publishing Corporation, 1988.

    Google Scholar

    [16] 纪宏伟, 孙经先.抽象空间中非线性算子方程变号解的存在性研究[J].数学的实践与认识, 2017, 47(2):257-263.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(762) PDF downloads(61) Cited by(0)

Access History

Other Articles By Authors

Sign-changing Solutions to the nonlinear Sturm-Liouville boundary value problem

Abstract: In this paper, consider the existence of sign-changing solutions for the nonlinear Sturm-Liouville boundary value problemLφ=fφ, 0 ≤ x ≤ 1αφ(0)-βφ'(0)=0, γφ(1)+δφ'(1)=0Besides, the existence of sign-changing solutions and the more general case of the Hammerstein integral equation are studied, and the general results are obtained, and the previous work is improved.

Reference (16)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return