JI Hong-wei. Sign-changing Solutions to the nonlinear Sturm-Liouville boundary value problem[J]. Journal of Southwest China Normal University(Natural Science Edition), 2018, 43(5): 17-22. doi: 10.13718/j.cnki.xsxb.2018.05.004
Citation: |
JI Hong-wei. Sign-changing Solutions to the nonlinear Sturm-Liouville boundary value problem[J]. Journal of Southwest China Normal University(Natural Science Edition), 2018, 43(5): 17-22. doi: 10.13718/j.cnki.xsxb.2018.05.004
|
Sign-changing Solutions to the nonlinear Sturm-Liouville boundary value problem
More Information
-
Received Date:
20/03/2017
-
-
Abstract
In this paper, consider the existence of sign-changing solutions for the nonlinear Sturm-Liouville boundary value problemLφ=fφ, 0 ≤ x ≤ 1αφ(0)-βφ'(0)=0, γφ(1)+δφ'(1)=0Besides, the existence of sign-changing solutions and the more general case of the Hammerstein integral equation are studied, and the general results are obtained, and the previous work is improved.
-
-
References
[1]
|
ZHANG M Z.Regular Approximation of Singular Sturm-Liouville Problems with Tramsmission Conditions[J].Applied Mathematics & Computation, 2014, 247(9):511-520.
Google Scholar
|
[2]
|
MUKHTAROV O S,AYDEMIR.Eigenfunction Expansion for Sturm-Liouville Problems with Tramsmission Conditions at One Ihterior Point[J].Actu Muthematica Scientiu, 2015, 35(3):639-649.
Google Scholar
|
[3]
|
高婷梅.一类带有凹凸非线性项的p-拉普拉斯方程一对正解的存在性[J].西南师范大学学报(自然科学版), 2015, 40(4):21-26.
Google Scholar
|
[4]
|
WILKENINY J, CENFON A.A Spectral Transform Method for Singular Sturm-Liouville Problems with Applications to Energy Diffusion in Plusma Physics[J].Siam J Appl Math, 2013, 75(2):350-392.
Google Scholar
|
[5]
|
张兴秋.奇异半正Sturm_Liouville边值问题的多个正解[J]. 应用数学学报, 2013, 36(3):1094-1107.
Google Scholar
|
[6]
|
NI X, GE W. AExistence of Positive Solutions for Boundary Value Problems on the Semi-Infinite Interval[J].Chinese Quarterly Journal of Mathematics Nonlinear, 2005, 20(3):380-384.
Google Scholar
|
[7]
|
孙经先, 李红玉.奇异非线性Sturm-Liouville边值问题正解的全局结构[J]. 数学物理学报, 2008, 28A(3):424-433.
Google Scholar
|
[8]
|
李红玉, 孙经先, 崔玉军.双重Hammerstein型积分方程正解的存在性[J].工程数学学报, 2008, 25(5):931-934.
Google Scholar
|
[9]
|
李红玉, 孙经先, 崔玉军.超线性非线性Sturm-Liouville边值问题的正解[J]. 数学年刊, 2010, 31A(2):183-188.
Google Scholar
|
[10]
|
张杰.一类Semipositone问题的多个正解[J].西南师范大学学报(自然科学版), 2016, 41(6):31-34.
Google Scholar
|
[11]
|
杨景保.一类Sturm-Liouville边值问题正解的存在性[J].山东大学学报(理学版), 2010, 45(2):84-89.
Google Scholar
|
[12]
|
张玲忠, 李永祥.Banach空间非线性Sturm-Liouville边值问题的正解[J].数学物理学报, 2009, 29A(3):784-793.
Google Scholar
|
[13]
|
张克梅, 孙经先.非线性算子方程变号解的存在性及其应用[J].数学学报, 2003, 46(4):815-822.
Google Scholar
|
[14]
|
崔玉军, 孙经先.Banach空间非线性Sturm-Liouville问题的解[J].系统科学与数学, 2009, 29(2):208-214.
Google Scholar
|
[15]
|
DEIMLING K.Nonlinear Functional Analysis[M].Beijing:World Publishing Corporation, 1988.
Google Scholar
|
[16]
|
纪宏伟, 孙经先.抽象空间中非线性算子方程变号解的存在性研究[J].数学的实践与认识, 2017, 47(2):257-263.
Google Scholar
|
-
-
Access History
-