Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2018 Volume 43 Issue 11
Article Contents

ZOU Jin-song. Mobile Malware Detection Model Based on Immune Danger Theory[J]. Journal of Southwest China Normal University(Natural Science Edition), 2018, 43(11): 78-85. doi: 10.13718/j.cnki.xsxb.2018.11.013
Citation: ZOU Jin-song. Mobile Malware Detection Model Based on Immune Danger Theory[J]. Journal of Southwest China Normal University(Natural Science Edition), 2018, 43(11): 78-85. doi: 10.13718/j.cnki.xsxb.2018.11.013

Mobile Malware Detection Model Based on Immune Danger Theory

More Information
  • Received Date: 28/12/2017
  • In order to improve the adaptability and effectiveness of malware detection in mobile phones, a mobile malware detection model based on immune danger theory has been proposed in this paper. The model consists of four parts:data acquisition part, hazard signal generation part, co-stimulation signal generation part and warning part. Using differential method to express different dangerous signals, then the model produce corresponding co-stimulatory signals according to adaptive antigen presenting cells, and finally give early warning to malware. The experiment verifies the adaptability and effectiveness of this model.
  • 加载中
  • [1] 马晋杨,徐蕾.基于Android系统的手机恶意软件检测模型[J].计算机测量与控制,2016,24(1):156-158.

    Google Scholar

    [2] 胡迎春,熊江.基于SMS/MMS和Bluetooth的智能手机恶意软件传播模型研究[J].西南师范大学学报(自然科学版),2016,41(9):107-112.

    Google Scholar

    [3] 李宏鸢.Android平台的恶意代码检测技术的研究[D].成都:电子科技大学,2013.

    Google Scholar

    [4] 蔡志标,彭新光.基于系统调用的Android恶意软件检测[J].计算机工程与设计,2013,34(11):3757-3761.

    Google Scholar

    [5] 周裕娟,张红梅,张向利,等.基于Android权限信息的恶意软件检测[J].计算机应用研究,2015,32(10):3036-3040.

    Google Scholar

    [6] 白金荣,王俊峰,赵宗渠.基于PE静态结构特征的恶意软件检测方法[J].计算机科学,2013,40(1):122-126.

    Google Scholar

    [7] NARUDIN F A,FEIZOLLAH A,ANUAR N B,et al.Evaluation of Machine Learning Classifiers for Mobile Malware Detection[J].Soft Computing,2016,20(1):343-357.

    Google Scholar

    [8] CANFORA G,MEDVET E,MERCALDO F,et al.Acquiring and Analyzing App Metrics for Effective Mobile Malware Detection[C]//Proceedings of the 2016 ACM on International Workshop on Security and Privacy Analytics.New Orleans:ACM,2016.

    Google Scholar

    [9] 王盼,梁意文.手机恶意软件检测的分布式免疫模型[J].计算机工程与应用,2016,52(16):30-35.

    Google Scholar

    [10] SARACINO A,SGANDURRA D,DINI G,et al.Madam:Effective and Efficient Behavior-Based Android Malware Detection and Prevention[J].IEEE Transactions on Dependable and Secure Computing,2016,15(1):83-97.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(806) PDF downloads(117) Cited by(0)

Access History

Other Articles By Authors

Mobile Malware Detection Model Based on Immune Danger Theory

Abstract: In order to improve the adaptability and effectiveness of malware detection in mobile phones, a mobile malware detection model based on immune danger theory has been proposed in this paper. The model consists of four parts:data acquisition part, hazard signal generation part, co-stimulation signal generation part and warning part. Using differential method to express different dangerous signals, then the model produce corresponding co-stimulatory signals according to adaptive antigen presenting cells, and finally give early warning to malware. The experiment verifies the adaptability and effectiveness of this model.

Reference (10)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return