Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2019 Volume 44 Issue 8
Article Contents

Bao-xiang TANG, Han REN. Two Types of Nested Recursive Methods for Finding Counting Formulas of Perfect Matching Number[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(8): 23-27. doi: 10.13718/j.cnki.xsxb.2019.08.005
Citation: Bao-xiang TANG, Han REN. Two Types of Nested Recursive Methods for Finding Counting Formulas of Perfect Matching Number[J]. Journal of Southwest China Normal University(Natural Science Edition), 2019, 44(8): 23-27. doi: 10.13718/j.cnki.xsxb.2019.08.005

Two Types of Nested Recursive Methods for Finding Counting Formulas of Perfect Matching Number

More Information
  • Received Date: 10/09/2018
    Available Online: 20/08/2019
  • MSC: O157.5

  • The perfect matching of graphs 2-nD8 and 2-nD6 has been classified according to the perfect matching of a certain vertex of saturation, and the recursive relation of each kind of perfect matching number been obtained. Then the interrelationship between these recursive formulas has been used to eliminate those that are not needed. The recursive relation has been used to obtain the recursive relation of the perfect matching number of the two kinds of graphs. Finally, the formula for calculating the perfect matching number of the two graphs has been solved from the recursive formula.
  • 加载中
  • [1] Valiant L G.The Complexity of Computing the Permanent[J]. Theoretical Compute Science, 1979, 8(2):189-201. doi: 10.1016/0304-3975(79)90044-6

    CrossRef Google Scholar

    [2] LOVÁSZ L, PLUMMER M.Matching Theory[M].New York:North-Holland Press, 1986.

    Google Scholar

    [3] ZHANG H P.The Connectivity of Z-Transformation Graphs of Perfect Matchings of Polyominoes[J].Discrete Mathematics, 1996, 158(1-3):257-272. doi: 10.1016/0012-365X(95)00048-2

    CrossRef Google Scholar

    [4] YAN W G, ZHANG F J.Enumeration of Perfect Matchings of a Type of Cartesian Products of Graphs[J].Discrete Applied Mathematics, 2006, 154(1):145-157. doi: 10.1016/j.dam.2005.07.001

    CrossRef Google Scholar

    [5] LI S L, YAN W G.The Matching Energy of Graphs with Given Parameters[J].Discrete Applied Mathematics, 2014, 162:415-420. doi: 10.1016/j.dam.2013.09.014

    CrossRef Google Scholar

    [6] DONG F M, YAN W G, ZHANG F J.On the Number of Perfect Matchings of Line Graphs[J].Discrete Applied Mathematics, 2013, 161(6):794-801. doi: 10.1016/j.dam.2012.10.032

    CrossRef Google Scholar

    [7] CHANG A, SHIU WC.On the kth Eigenvalues of Trees with Perfect Matchings[J].Discrete Mathematics and Theoretical Computer Science, 2007, 9(1):321-332

    Google Scholar

    [8] 唐保祥, 任韩. 2类偶图完美匹配的数目[J].西南大学学报(自然科学版), 2012, 34(10):91-95.

    Google Scholar

    [9] 唐保祥, 任韩.3类特殊图完美对集数的计算[J].南开大学学报(自然科学版), 2014, 47(5):11-16.

    Google Scholar

    [10] 唐保祥, 任韩.4类图完美匹配的计数[J].武汉大学学报(理学版), 2012, 58(5):441-446.

    Google Scholar

    [11] 唐保祥, 任韩.几类特殊图完美匹配数目的递推求法[J].西南师范大学学报(自然科学版), 2014, 39(2):9-13.

    Google Scholar

    [12] 唐保祥, 任韩.两类图完美匹配的计数公式[J].吉林大学学报(理学版), 2016, 54(4):790-792.

    Google Scholar

    [13] 唐保祥, 任韩.2类图完美匹配数目的解析式[J].中山大学学报(自然科学版), 2016, 55(4):15-17.

    Google Scholar

    [14] 唐保祥, 任韩.2类特殊图中的完美匹配数[J].浙江大学学报(理学版), 2017, 44(3):266-269.

    Google Scholar

    [15] 黄丽娜, 李沐春, 刘海忠.图的邻点可区别V-全色数的一个上界[J].西南大学学报(自然科学版), 2017, 39(12):81-85.

    Google Scholar

    [16] 王文霞.无向无权图同构判别算法[J].西南师范大学学报(自然科学版), 2017, 42(3):141-145.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(1035) PDF downloads(176) Cited by(0)

Access History

Other Articles By Authors

Two Types of Nested Recursive Methods for Finding Counting Formulas of Perfect Matching Number

Abstract: The perfect matching of graphs 2-nD8 and 2-nD6 has been classified according to the perfect matching of a certain vertex of saturation, and the recursive relation of each kind of perfect matching number been obtained. Then the interrelationship between these recursive formulas has been used to eliminate those that are not needed. The recursive relation has been used to obtain the recursive relation of the perfect matching number of the two kinds of graphs. Finally, the formula for calculating the perfect matching number of the two graphs has been solved from the recursive formula.

  • 图的完美匹配计数理论在很多领域有广泛的应用,其中的计数思想和方法对组合数学产生了重要影响,因此受到众多学者的关注[1-16].本文用嵌套递推方法给出了2类2-边连通图完美匹配数目的计算公式.

    定义1  设图G是有完美匹配的图,若图G的两个完美匹配M1M2中有一条边不同,则称M1M2G的两个不同的完美匹配.

    定义2  n个8圈为C8iui1ui2ui3ui4ui5ui6ui7ui8ui1.分别连接圈C8i的顶点ui1ui6ui2ui5ui3ui8ui4ui7(i=1,2,…,n),再将圈C8i和圈C8i+1顶点ui3ui+1,8ui4ui+1,7分别连接起来(i=1,2,…,n-1),这样得到的图记为2-nD8,如图 1所示.

    定义3  n个6圈为C6iui1ui2ui3ui4ui5ui6vi1.分别连接圈C6i的顶点ui1ui4ui2ui6ui3ui5(i=1,2,…,n),再将圈C6i和圈C6i+1顶点ui2ui+1,6ui3ui+1,5分别连接起来(i=1,2,…,n-1),这样得到的图记为2-nD6,如图 2所示.

    定理1  设图 2-nD8的完美匹配数记为f(n),则

      易知图 2-nD8有完美匹配.为了求函数f(n)的解析式,先定义图G1,并求其完美匹配的数目.将路v1v2的端点v1v2分别与图 2-nD8的顶点u18u17各连接一条边,所得到的图记为G1,如图 3所示.

    易知图G1有完美匹配,设g(n)表示图G1的完美匹配的数.

    先求g(n)的表达式.设图G1完美匹配的集合为MG1含边v1v2v1u18的完美匹配集合分别为M1M2,则M1M2=ϕM=M1M2g(n)=|M|=|M1|+|M2|.

    求|M1|.因为v1v2M1,所以v1u18,${v_2}{u_{17}} \notin {M_1}$.由f(n)的定义知,|M1|=f(n).

    求|M2|.由g(n)的定义知,M2中包含边v1u18v2u17u11u12u15u16的完美匹配数为g(n-1);

    g(n)的定义知,M2中包含边v1u18v2u17u11u16u12u15的完美匹配数为g(n-1);

    f(n)的定义知,M2中包含边v1u18v2u17u11u16u12u13u14u15的完美匹配数为f(n-1).

    M2中上述3类完美匹配互不包含,互不相交,且穷尽了M2中所有完美匹配,故

    综上所述,就有

    再求f(n).设图 2-nD8完美匹配的集合为M(1),图 2-nD8含边u11u18u18u13u18u17的完美匹配集合分别为M3M4M5,则MiMj=ϕ(3≤ij≤5),M(1)=M3M4M5f(n)=|M(1)|=|M3|+|M4|+|M5|.

    求|M3|.由f(n)的定义知,M3中包含边u11u18u12u13u14u17u15u16的完美匹配数为f(n-1);

    g(n)的定义知,M3中包含边u11u18u17u16u12u15的完美匹配数为g(n-1);

    f(n)的定义知,M3中包含边u11u18u17u16u12u13u14u15的完美匹配数为f(n-1).

    M3中上述3类完美匹配互不包含,互不相交,且穷尽了M3中所有完美匹配,故

    求|M4|.由f(n)的定义知,M4中包含边u11u12u13u18u16u17u14u15的完美匹配数为f(n-1);

    f(n)的定义知,M4中包含边u13u18u14u17u11u16u12u15的完美匹配数为f(n-1);

    f(n)的定义知,M4中包含边u13u18u14u17u11u12u15u16的完美匹配数为f(n-1).

    M4中上述3类完美匹配互不包含,互不相交,且穷尽了M4中所有完美匹配,故

    求|M5|.由g(n)的定义知,M5中包含边u11u12u15u16u17u18的完美匹配数为g(n-1);

    g(n)的定义知,M5中包含边u17u18u11u16u12u15的完美匹配数为g(n-1);

    f(n)的定义知,M5中包含边u17u18u11u16u12u13u14u15的完美匹配数为f(n-1).

    M5中上述3类完美匹配互不包含,互不相交,且穷尽了M5中所有完美匹配,故

    综上所述,有

    把(1)式代入(2)式,得

    由(1)式,得

    由(3)-(4)式,得

    图 4知,f(1)=9.

    图 5知,g(1)=12.

    由(1)式,得

    线性递推式(5)的特征方程为x2-11x+9=0,特征根为$x = \frac{{11 \pm \sqrt {85} }}{2}$.故(5)式的通解为

    所以(5)式满足f(1)=9,f(2)=90的解为

    定理2  设图 2-nD6的完美匹配数记为σ(n),则σ(n)=4·5n-1.

      易知图 2-nD6有完美匹配.为了求函数σ(n)的解析式,先定义图G4,并求其完美匹配的数目.将长为1的路v1v2的端点v1v2分别与图 2-nD6的顶点u16u15各连接一条边,所得到的图记为G4,如图 6所示.

    易知图G4有完美匹配,设τ(n)表示图G4的完美匹配数.设图G4完美匹配的集合为M(2)G4含边v1v2v1u16的完美匹配集合分别为M6M7,则M6M7=ϕM(2)=M6M7τ(n)=|M(2)|=|M6|+|M7|.

    求|M6|.因为v1v2M6,所以由σ(n)的定义知,|M6|=σ(n).

    求|M7|.由τ(n)的定义知,M7中包含边v1u16v2u15u11u14的完美匹配数为τ(n-1);

    σ(n)的定义知,M7中包含边v1u16v2u15u11u12u13u14的完美匹配数为σ(n-1).

    M7中上述2类完美匹配互不包含,互不相交,且穷尽了M7中所有完美匹配,故

    综上所述,有

    再求σ(n).设图 2-nD6的完美匹配的集合为M(3),图 2-nD6含边u11u16u12u16u15u16的完美匹配集合分别为M8M9M10,则MiMj=ϕ(8≤ij≤10),M(3)=M8M9M10σ(n)=|M(3)|=|M8|+|M9|+|M10|.

    求|M8|.因为u11u16u14u15M8,所以由τ(n)的定义知,|M8|=τ(n-1).

    求|M9|.因为u12u16u13u15u11u14M8,所以由σ(n)的定义知,|M9|=σ(n-1).

    求|M10|.由τ(n)的定义知,M10含边u15u16u11u14的完美匹配数为τ(n-1);

    σ(n)的定义知,M10含边u15u16u11u12u13u14的完美匹配数为σ(n-1).

    M10中上述2类完美匹配互不包含,互不相交,且穷尽了M10中所有完美匹配,故

    综上所述,有

    把(6)式代入(7)式,得

    图 7知,σ(1)=4.

    故(8)式满足σ(1)=4的解为

Figure (7)  Reference (16)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return