Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2020 Volume 45 Issue 2
Article Contents

Lei JI. Positive Solutions for a Class of Nonhomogeneous Kirchhoff Type Equation with Critical Exponent in High Dimension[J]. Journal of Southwest China Normal University(Natural Science Edition), 2020, 45(2): 20-25. doi: 10.13718/j.cnki.xsxb.2020.02.004
Citation: Lei JI. Positive Solutions for a Class of Nonhomogeneous Kirchhoff Type Equation with Critical Exponent in High Dimension[J]. Journal of Southwest China Normal University(Natural Science Edition), 2020, 45(2): 20-25. doi: 10.13718/j.cnki.xsxb.2020.02.004

Positive Solutions for a Class of Nonhomogeneous Kirchhoff Type Equation with Critical Exponent in High Dimension

More Information
  • Received Date: 04/05/2019
    Available Online: 20/02/2020
  • MSC: O176.3

  • A class of nonhomogeneous Kirchhoff type equations with critical exponent is considered in high dimension. By the variational method, when N=4, two positive solutions are obtained; while N>4, the existence of positive solutions is obtained. The results complete and improve some results of the correlative references.
  • 加载中
  • [1] BENMANSOUR S, BOUCHEKIF M.Nonhomogeneous Elliptic Problems of Kirchhoff Type Involving Critical Sobolev Exponents[J].Electronic Journal of Differential Equations, 2015, 2015(69):1-11.

    Google Scholar

    [2] 丁瑶, 廖家锋.一类带临界指数的非齐次Kirchhoff型方程正解的存在性[J].西南师范大学学报(自然科学版), 2015, 40(12):17-21.

    Google Scholar

    [3] 吉蕾, 廖家锋.一类带临界指数的非齐次Kirchhoff型问题第二个正解的存在性[J].数学物理学报(A辑), 2019, 39(5):1094-1101.

    Google Scholar

    [4] NAIMEN D. The Critical Problem of Kirchhoff Type Elliptic Equations in Dimension Four[J].J Differential Equations, 2014, 257(4):1168-1193. doi: 10.1016/j.jde.2014.05.002

    CrossRef Google Scholar

    [5] 廖家锋, 李红英.带Sobolev临界指数的超线性Kirchhoff型方程正解的存在性与多解性[J].数学物理学报(A辑), 2017, 37(6):1119-1124.

    Google Scholar

    [6] LIAO J F, KEX F, LIU J, et al.The Brezis-Nirenberg Result for the Kirchhoff-Type Equation in Dimension Four[J].ApplAnal, 2018, 97(15):2720-2726.

    Google Scholar

    [7] LIAO J F, LIH Y, ZHANG P.Existence and Multiplicity of Solutions for a Nonlocal Problem with Critical Sobolev Exponent[J].Comput Math Appl, 2018, 75(3):787-797. doi: 10.1016/j.camwa.2017.10.012

    CrossRef Google Scholar

    [8] LIU R Q, TANGC L, LIAO J F, et al.Positive Solutions of Kirchhoff Type Problem with Singular and Critical Nonlinearities in Dimension Four[J].Commun Pure ApplAnal, 2016, 15(5):1841-1856. doi: 10.3934/cpaa.2016006

    CrossRef Google Scholar

    [9] HUANG Y S, LIU Z, WUY Z.On Kirchhoff Type Equations with Critical Sobolev Exponent[J].JMathAnalAppl, 2018, 462(1):483-504. doi: 10.1016/j.jmaa.2018.02.023

    CrossRef Google Scholar

    [10] 刘芮琪, 吴行平, 唐春雷.高维空间中一类奇异Kirchhoff型问题正解的存在性[J].西南大学学报(自然科学版), 2016, 38(4):67-71.

    Google Scholar

    [11] 唐榆婷, 唐春雷.一类带Hardy-Sobolev临界指数的Kirchhoff方程正解的存在性[J].西南大学学报(自然科学版), 2017, 39(6):81-86.

    Google Scholar

    [12] BRÉZIS H, NIRENBERG L.Positive Solutions of Nonlinear Elliptic Equations Involving Critical Exponents[J]. Comm Pure Appl Math, 1983, 36(4):437-477. doi: 10.1002/cpa.3160360405

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1518) PDF downloads(151) Cited by(0)

Access History

Other Articles By Authors

Positive Solutions for a Class of Nonhomogeneous Kirchhoff Type Equation with Critical Exponent in High Dimension

Abstract: A class of nonhomogeneous Kirchhoff type equations with critical exponent is considered in high dimension. By the variational method, when N=4, two positive solutions are obtained; while N>4, the existence of positive solutions is obtained. The results complete and improve some results of the correlative references.

  • 考虑如下一类具有临界指数的非齐次Kirchhoff型方程:

    其中Ω$\mathbb{R}$N(N≥4)是非空有界开集,abλ>0为参量,$f \in L^{\frac{2 *}{2^{*}-1}}$(Ω)是非零非负函数.

    近期,如下带临界指数的Kirchhoff型方程被广泛研究:

    其中Ω$\mathbb{R}$3(N≥3)是非空有界开集,0≤q < 2*-1.当N=3,q=0时,文献[1-3]先后利用变分法和临界点理论研究了方程(2),其中文献[3]完善了文献[1]的结果,补充了文献[2]的结果.本文在文献[1-3]的基础上研究方程(1)正解的存在情况.当N=4,1≤q < 3时,文献[4]获得了方程(2)正解的存在性结果和正解存在的条件.随后,文献[5]在N≥4,1 < q < 3的情况下获得了方程(2)正解的存在性以及解的多重性,补充完善了文献[4]中相应的结果.文献[6]补充了文献[4]中q=1的结果.当N≥4,0 < q < 1时,文献[7]研究了方程(2)正解的存在性与解的多重性.当N=4,-1 < q < 0时,文献[8]研究了方程(2)正解的存在性和多解性条件.特别地,文献[9]证明了文献[4]提出的部分公开方程.文献[10-11]也研究了Kirchhoff型方程正解的存在性.

    为了寻找方程(1)的正解,定义其对应的能量泛函I

    其中$u = {\left( {\int_\mathit{\Omega } | \nabla u{|^2}{\rm{d}}x} \right)^{\frac{1}{2}}}$为Sobolev空间H01(Ω)的范数,u±=max{±u,0}.显然,IC1(H01(Ω),$\mathbb{R}$),且∀φH01(Ω)有

    众所周知,方程(1)的解与其能量泛函I的临界点是一一对应的.记$|u|_{p}=\left(\int_{\Omega}|u|^{p} \mathrm{d} x\right)^{\frac{1}{p}}$为空间Lp(Ω)的范数,且S为最佳Soboleve嵌入常数,即

    定理1  假设abμ>0,N≥4,$f \in L^{\frac{2 *}{2^{*}-1}}$(Ω)是非零非负函数,则存在λ*>0,使得对∀0 < λ < λ*,方程(1)都存在一个正局部极小解u*,满足I(u*) < 0.

      根据Hölder不等式和(3)式,可得

    从而结合(3)式和(4)式,有

    一方面,当N=4时,2*=4.根据(5)式,可得

    当0 < μbS2时,I在空间H01(Ω)上是强制的.从而结合(5)式,容易得证:存在正数Rρλ*,使得对∀0 < λ < λ*都有

    其中SR={uH01(Ω):‖u‖=R}.当μ>bS2时,对∀t>0,令

    容易得到$g^{\prime}(t)=\frac{a}{2}-\frac{3\left(\mu-b S^{2}\right)}{4} t^{2}$.令g′(t)=0,可得$t_{\max }=\left[\frac{2 a}{3\left(\mu-b S^{2}\right)}\right]^{\frac{1}{2}}$,且

    R=tmax>0,有

    从而,结合(5)式,存在ρ>0,使得对∀0 < λ < λ*都有(6)式成立.

    另一方面,当N≥5时,2* < 4.故对∀μ>0,I在空间H01(Ω)上是强制的.从而,容易得到(6)式成立.

    因此,对∀N≥4,μ>0,存在正数Rρλ*,使得对∀0 < λ < λ*都有(6)式成立.对∀uH01(Ω)且u+≠0,有$\mathop {\lim }\limits_{t \to {0^ + }} \frac{{I(tu)}}{t} = - \lambda \int_\mathit{\Omega } f (x){u^ + }{\rm{d}}x < 0$.因此,对∀uH01(Ω)且u+≠0,当t>0充分小时有I(tu) < 0.从而,$m = \mathop {\inf }\limits_{u \in \overline {{B_R}} } I(u) < 0$有定义.接下来,证明泛函IH01(Ω)中能达到局部极小值m,即存在u*$\overline {{B_R}} $使得I(u*)=m,其中$\overline {{B_R}} $={uH01(Ω)}:‖u‖≤R}为一个闭球.

    根据下确界的定义,存在极小化序列{un}⊂$\overline {{B_R}} $,使得$\lim\limits_{n \rightarrow \infty} I\left(u_{n}\right)=m<0$.从而,对{un}的一个子列(仍记为{un}),存在一个u*H01(Ω),使得当n→∞时有

    注意到$\overline {{B_R}}$是闭凸集,从而$\overline {{B_R}}$是弱闭的,因此u*$\overline {{B_R}}$.下证I(u*)=m.根据控制收敛定理,可得

    不妨假设wn=un-u*,根据以及Brézis-Lieb引理,可得

    其中o(1)是n→∞时的无穷小量.由(6)式,对∀0 < λ < λ*

    由(11)式和m < 0可知,存在ε0>0,使得对∀n$\mathbb{N}$+都有‖un‖≤R-ε0.从而,结合u*$\overline {{B_R}}$以及(9)式可知,当n充分大时有wn$\overline {{B_R}}$.再次用(6)式,可得

    再结合(8)-(10)式,有

    从而,当n→∞时,有mI(u*).又因为u*∈→$\overline {{B_R}}$,从而有I(u*)≥m.因此I(u*)=m.即u*是方程(1)的非零解.从而,对∀φH01(Ω)有

    特别地,取φ=$u_*^ - $,可得

    从而$u_*^ - $=0,即u*≥0在Ω中几乎处处成立.因此,u*是一个非零非负解.再由强极大值原理可得,u*是方程(1)的正解且I(u*)=m < 0.定理1证毕.

    接下来,假设N=4,μ>bS2,研究方程(1)的山路解.首先证明泛函IH01(Ω)上满足局部(PS)c条件.此时,$I(u) = \frac{a}{2}u{^2} + \frac{b}{4}u{^4} - \frac{\mu }{4}\left| {{u^ + }} \right|_4^4 - \lambda \int_\mathit{\Omega } f (x){u^ + }{\rm{d}}x$.

    引理1  假设ab>0,μ>bS2$f \in L^{\frac{4}{3}}$(Ω)是一个非零非负函数,则对任意的$c<\frac{a^{2} S^{2}}{4\left(\mu-b S^{2}\right)}-D \lambda^{2}$IH01(Ω)上满足局部(PS)c条件,其中$D=\frac{9|f|_{\frac{4}{3}}^{2}}{16 a S}$.

      假设{un}使得IH01(Ω)上满足局部(PS)c条件,即当n→+∞有

    我们断言:{un}是H01(Ω)上的有界序列.事实上,根据(12)式、(3)式以及Hölder不等式,可得

    这就意味着{un}在H01(Ω)上有界.从而存在子列,仍记为{un},以及uH01(Ω)为其弱极限,记wn=un-u.当n→∞时,将u*换成u,则(7)-(10)式都成立.由(8)式和(12)式,可得

    进一步,结合(9)-(10)式,可得

    再次利用(12)式,可得

    一方面,根据(14)式以及Young不等式,可得

    另一方面,根据(13)式和(14)式,可得

    由(3)式,可得$\int_\mathit{\Omega } {{{\left( {w_n^ + } \right)}^4}} {\rm{d}}x\int_\Omega {{{\left| {{w_n}} \right|}^4}} {\rm{d}}x\frac{{{{\left\| {{w_n}} \right\|}^4}}}{{{S^2}}}$.从而根据(16)式,可得al2+bl4+bl2u2$\frac{\mu l^{4}}{S^{2}}$,这就意味着$l^{2} \geqslant \frac{\left(a+b\|u\|^{2}\right) S^{2}}{\mu-b S^{2}}$.从而,结合(16)式和(17)式,可得

    这与(15)式矛盾.故l≡0.即当n→∞时,unu(xH01(Ω)).即对$\forall c<\frac{a^{2} S^{2}}{4\left(\mu-b S^{2}\right)}-D \lambda^{2}$IH01(Ω)上满足局部(PS)c条件.引理1证毕.

    众所周知,$U(x)=\frac{2 \sqrt{2}}{1+|x|^{2}}$(x$\mathbb{R}$4)是临界方程-Δu=u3(x$\mathbb{R}$4)的正解,且‖U2=|U|44=S2.记ηC0(Ω)为截断函数,使得0≤η≤1,|▽η|≤C1.当|x|≤δ时,η(x)=1;当|x|≥2δ时,η(x)=0.令uε(x)=$\varepsilon^{-1} \eta(x) U\left(\frac{x}{\varepsilon}\right)$=$\frac{2 \sqrt{2} \varepsilon \eta(x)}{\varepsilon^{2}+|x|^{2}}$.根据文献[12],可得

    引理2  假设ab>0,μ>bS2$f \in L^{\frac{4}{3}}$(Ω)是非零非负函数且满足条件(F):

    $f \in L^{\frac{4}{3}}$存在δρ>0和1<β<2,使得对∀|x|<ρ$\sup\limits_{t \geqslant 0} I\left(t u_{0}\right)<\frac{a^{2} S^{2}}{4\left(\mu-b S^{2}\right)}-D \lambda^{2}$.

    则存在λ*>0以及u0H01(Ω),使得对∀0 < λ < λ*有$\mathop {\sup }\limits_{t \ge 0} $ I(tu0) < $\frac{a^{2} S^{2}}{4\left(\mu-b S^{2}\right)}$-2.

      对任意的0 < λ < $\left[\frac{a^{2} S^{2}}{4 D\left(\mu-b S^{2}\right)}\right]^{\frac{1}{2}}$,有$\frac{a^{2} S^{2}}{4\left(\mu-b S^{2}\right)}$-2>0. ∀t≥0,定义

    进一步,根据(18)式,可得

    因此,类似于文献[3]中引理2.3的证明可得,存在tε>0使得$\sup _{t \geqslant 0}$ I(tuε)=I(tεuε),且存在与ε无关的正常数t0T0使得t0 < tε < T0.令

    则有I′ε(t)=atuε2+bt3uε4-μ t3|uε|44.令I′ε(t)=0,则

    可得Tε2=$\frac{{a{{\left\| {{u_\varepsilon }} \right\|}^2}}}{{\mu \int_\mathit{\Omega } {u_\varepsilon ^4} {\rm{d}}x - b{{\left\| {{u_\varepsilon }} \right\|}^4}}}$.因此,对∀0 < t < TεI′ε(t)>0.而当t>Tε时有I′ε(t) < 0,且Iε(t)在Tε处达到最大值.从而,根据(20)式,可得

    根据条件(F)以及uε的定义,对∀0 < ε < $\sqrt{\delta}$,可得

    其中C表示不同的正常数.因此,根据(21)式和(22)式,可得

    其中C1C2>0为正常数.取λ=ε且0 < λ < $\left(\frac{C_{2}}{C_{1}+D}\right)^{\frac{1}{\beta-1}}$,由于1 < β < 2,可得C1ε2-C2λε2-β=λ2(C1-C2λ1-β) < -2.取

    当0 < λ < λ*时,有I(tuε) < $\frac{a^{2} S^{2}}{4\left(\mu-b S^{2}\right)}$-2.因此,取u0=uε,当0 < λ < λ*时,有$\mathop {\sup }\limits_{t \ge 0}$≥0 I(tu0) < $\frac{a^{2} S^{2}}{4\left(\mu-b S^{2}\right)}$-2.引理2证毕.

    定理2  假设ab>0,N=4,μ>bS2,$f \in L^{\frac{4}{3}}$(Ω)是非零非负函数,且满足条件(F),则存在λ**>0(λ**λ*),使得对∀0 < λ < λ**,方程(1)还存在一个正山路解u**,且I(u**)>0.

      取λ**=min{λ*λ*},则对∀0 < λ < λ**,定理1以及引理1、引理2均成立.从而,根据(6)式和(19)式,容易得到泛函IH01(Ω)上满足山路几何结构.即当uSR时,有I(u)|SR>ρ>0;存在eH01(Ω)使得‖e‖>RI(e) < 0.定义

    根据引理1和引理2,存在{un}⊂H01(Ω)使得I(un)→c>ρ>0且I′(un)→0,则序列{un}在H01(Ω)中存在收敛子列(仍记为{un}).不妨假设在H01(Ω)中unu**.根据山路定理,可得$\lim\limits_{n \rightarrow \infty}$ I(un)=I(u**)=c>0且I′(u**)=0.因此u**是方程(1)的非零解.根据u*的证明,同理可证,u**是方程(1)的正解.

Reference (12)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return