Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2020 Volume 45 Issue 3
Article Contents

Qiang-qiang LIU. On Existence of Exponential Attractors for Kirchhoff-Type Coupled Suspension Bridge Equations[J]. Journal of Southwest China Normal University(Natural Science Edition), 2020, 45(3): 27-33. doi: 10.13718/j.cnki.xsxb.2020.03.005
Citation: Qiang-qiang LIU. On Existence of Exponential Attractors for Kirchhoff-Type Coupled Suspension Bridge Equations[J]. Journal of Southwest China Normal University(Natural Science Edition), 2020, 45(3): 27-33. doi: 10.13718/j.cnki.xsxb.2020.03.005

On Existence of Exponential Attractors for Kirchhoff-Type Coupled Suspension Bridge Equations

More Information
  • Received Date: 10/05/2019
    Available Online: 20/03/2020
  • MSC: O175.29

  • In this paper, the long-time dynamical behavior of Kirchhoff-type coupled suspension bridge equations has been studied. The asymptotic compactness of solution semigroup was first verified, then, the existence of exponential attractors for Kirchhoff-type coupled suspension bridge equations obtained by means of the so called enhanced flattening property, and some known results are improved and extended.
  • 加载中
  • [1] LAZER A C, MCKENNA P J.Large-Amplitude Periodic Oscillations in Suspension Bridges:Some New Connections with Nonlinear Analysis[J].SIAM Review, 1990, 32(4):537-578. doi: 10.1137/1032120

    CrossRef Google Scholar

    [2] HARBI H, AHMED N U.Mathematical Analysis of Dynamic Models of Suspension Bridges[J].SIAM Journal on Applied Mathematics, 1998, 58(3):853-874.

    Google Scholar

    [3] MCKENNA P J, WALTER W.Nonlinear Oscillations in a Suspension Bridge[J].Archive for Rational Mechanics and Analysis, 1987, 98(2):167-177. doi: 10.1007/BF00251232

    CrossRef Google Scholar

    [4] HEUNGCHOI Q, JUNG T.A Nonlinear Suspension Bridge Equation with Nonconstant Load[J].Nonlinear Analysis:Theory, Methods & Applications, 1999, 35(6):649-668.

    Google Scholar

    [5] MA Q Z, ZHONG C K.Existence of Global Attractors for the Coupled System of Suspension Bridge Equations[J]. Journal of Mathematical Analysis and Applications, 2005, 308(1):365-379. doi: 10.1016/j.jmaa.2005.01.036

    CrossRef Google Scholar

    [6] 王春梅, 汪璇.弱耗散记忆型吊桥方程的渐近性态[J].西南大学学报(自然科学版), 2013, 35(12):71-75.

    Google Scholar

    [7] ZHONG C K, MA Q Z, SUN C Y.Existence of Strong Solutions and Global Attractors for the Suspension Bridge Equations[J].Nonlinear Analysis:Theory, Methods & Applications, 2007, 67(2):442-454.

    Google Scholar

    [8] MA Q Z, ZHONG C K.Existence of Strong Solutions and Global Attractors for the Coupled Suspension Bridge Equations[J].Journal of Differential Equations, 2009, 246(10):3755-3775. doi: 10.1016/j.jde.2009.02.022

    CrossRef Google Scholar

    [9] 贾澜, 马巧珍.基尔霍夫型吊桥方程指数吸引子的存在性[J].四川师范大学学报(自然科学版), 2018, 41(2):185-189. doi: 10.3969/j.issn.1001-8395.2018.02.006

    CrossRef Google Scholar

    [10] 罗旭东.耦合吊桥方程指数吸引子的存在性[J].西南大学学报(自然科学版), 2017, 39(9):102-106.

    Google Scholar

    [11] PARK J Y, KANG J R.Global Attractors for the Suspension Bridge Equations with Nonlinear Damping[J].Quarterly of Applied Mathematics, 2011, 69(3):465-475. doi: 10.1090/S0033-569X-2011-01259-1

    CrossRef Google Scholar

    [12] 刘世芳, 马巧珍.具有历史记忆的阻尼吊桥方程强全局吸引子的存在性[J].数学物理学报, 2017, 37A (4):684-697.

    Google Scholar

    [13] 黄商商, 马巧珍.带线性记忆的阻尼耦合吊桥方程的全局吸引子[J].华东师范大学学报(自然科学版), 2018(2):11-22. doi: 10.3969/j.issn.1000-5641.2018.02.002

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(833) PDF downloads(95) Cited by(0)

Access History

Other Articles By Authors

On Existence of Exponential Attractors for Kirchhoff-Type Coupled Suspension Bridge Equations

Abstract: In this paper, the long-time dynamical behavior of Kirchhoff-type coupled suspension bridge equations has been studied. The asymptotic compactness of solution semigroup was first verified, then, the existence of exponential attractors for Kirchhoff-type coupled suspension bridge equations obtained by means of the so called enhanced flattening property, and some known results are improved and extended.

  • Ω$\mathbb{R} $2是具有光滑边界Ω的有界开区域,考虑基尔霍夫型耦合吊桥方程

    全局吸引子的存在性,其中:abα1α2是正常数;k2是弹性系数;外力项g1g2L2(Ω).函数(uv)+max={uv,0}吊桥方程由文献[1]作为非线性分析领域的一个新问题首次提出.此后,一些学者对该模型进行了研究,但他们主要讨论解的存在性[2-4].文献[5-6]获得了单个及耦合吊桥方程弱解的全局吸引子.文献[7-8]得到了耦合吊桥方程强解和强全局吸引子.文献[9]在较弱的非线性项条件下,运用加强的平坦性条件,获得了基尔霍夫型吊桥方程指数吸引子的存在性.文献[10]运用加强的平坦性条件获得了耦合吊桥方程指数吸引子的存在性.文献[11]得到了带非线性阻尼吊桥方程的全局吸引子.最近,文献[12-13]利用收缩函数的方法分别在强和弱的拓扑空间证得了单个及耦合吊桥的全局吸引子.受上述文献的启发,本文运用条件(C)的方法,证明基尔霍夫型耦合吊桥方程全局吸引子的存在性.

1.   函数集和准备工作
  • 不失一般性,定义Hilbert空间${{V}_{s}}=D\left( {{A}^{\frac{s}{2}}} \right)$,其内积和范数分别为

    s=0时,记H=L2(Ω);当s=1时,记V1=H1(Ω)∩H01(Ω);当s=2时,记V2=H2(Ω)∩H01(Ω);为了书写方便,记O=V2×H×V1×H用‖Au‖表示D(A)的范数,其中A=-Δ.

    特别地,有紧嵌入Vs+1Vs和Poincaré不等式

    其中λ1A的第一特征值.

    此外,非线性项满足如下条件:fiC($\mathbb{R} $$\mathbb{R} $),i=1,2,且满足

    由条件(3)可知,存在正常数K1K2K3K4≥0,∀s$\mathbb{R} $ηi=ηi(λ1)>0,i=1,2,使得

    为了得到问题(1)的全局吸引子,还需要下面的抽象结果:

    定义1 [5]  设X为Banach空间且{S(t)}t≥0X上的一族映射. {S(t)}t≥0被称为X上的强弱连续半群,当且仅当{S(t)}t≥0满足:

    1) 为恒等S(0)=Id映射;

    2) S(t)S(s)=S(t+s),∀ts≥0;

    3)当tntxnx时,S(tn)xnS(t)x.

    定义2 [8]   Banach空间M中的半群{S(t)}t≥0被称为满足条件(C),如果对任意ε>0和M中的任意有界集B,存在t(B)>0和有限维子空间X1,使得{‖PS(t)x‖|xBtt(B)}有界,且当tt(B)时,有

    这里PMX1为正交投影.

    定理1 [8]  设X为Banach空间且{S(t)}t≥0X上的强弱连续半群.那么{S(t)}t≥0X上存在全局吸引子,当且仅当

    1) {S(t)}t≥0X上存在有界吸收集B

    2) {S(t)}t≥0满足条件(C).

    引理1 [13]   (解的存在唯一性)设条件(2),(3)成立.若giL2(Ω),i=1,2,u0V2v0V1u1v1H,则问题(1)有唯一解(u(t),v(t),ut(t),vt(t))满足

    并且{u1v1u2v2}→{u(t),v(t),ut(t),vt(t)}在O上连续.

    运用引理1,定义与问题(1)相关的C0半群S(t),即

    S(t)将映射到自己.

2.   有界吸收集
  • 定理2   设α1>0,α2>0,fiC($\mathbb{R} $$\mathbb{R} $)满足条件(2)和(3),giL2(Ω),i=1,2.则球B=BO(0,ρ1)与问题(1)生成的解半群{S(t)}t≥0O中存在有界吸收集,即对O中任意有界集B,存在tt1(B),使得当tt(B)时,有S(t)BB.

      取0 < ε < 1,用φ=ut+εuψ=vt+εv,分别与(1)

    式中的两个式子在空间L2(Ω)中作内积,有

    结合(2),(3)式,Hölder不等式和Poincaré不等式,有

    此外

    将(9)-(15)式代入(8)式,并通过简单计算后得

    根据(4)-(7)式,运用Sobolev紧嵌入定理,有

    其中:N1=2K2|Ω|+ $\frac{1}{\lambda _{1}^{2}\varepsilon }$g12N2=2K4|Ω|+ $\frac{1}{{{\lambda }_{1}}\varepsilon }$g22.

    其中:N3=2K1|Ω|+ $\frac{1}{\lambda _{1}^{2}}$g12N4=2K3|Ω|+$\frac{1}{{{\lambda }_{1}}\varepsilon }$g22.

    εη1η2充分小,使得

    从而

    由(21)-(23)式可知

    因此,对$\forall {{\rho }_{1}}>\frac{2\left( {{M}_{3}}+{{M}_{4}} \right)}{{{C}_{1}}}$,存在t1=t1(B),使得

    所以,若uv是系统(1)的解,令${{B}_{1}}=\bigcup\limits_{t>0}{S}(t)B_{1}^{\prime }$,其中

    B是半群{S(t)}t≥0O上的有界吸收集.

    有界吸收集的存在性意味着对于依赖于有界集的初值,问题(1)的解全局有界,即,若(uvutvt)是问题(1)在有界集B上对应于初值(u0v0u1v1)的解,则

    其中ρ1≥0是依赖于B的常数.

3.   全局吸引子的存在性
  • 引理2[6]  设fiC($\mathbb{R} $$\mathbb{R} $),i=1,2满足条件(2)和(3),则(f1f2):V2×V1 H×H为紧连续.

    定理3  设方程(1)的解半群为{S(t)}t≥0,若非线性项fiC($\mathbb{R} $$\mathbb{R} $),满足条件(2)和(3),giL2(Ω),i=1,2,则{S(t)}t≥0O有全局吸引子 < 124>A < 124>α.

      根据定理1和定理2,只需要证明满足条件(C),设(γiλj),ij=1,2,…为算子A2×A在空间V2×V1中的特征值,满足

    且当j→∞时,λj→∞;当i→∞时,γi→∞;(xjωi)为特征值(λjγi)对应的特征向量,它们构成空间V2×V1的一组正交基,满足:

    Hm=span{x1x2,…xm},Qn=span{ω1ω2,…ωn},PmV2HmQnV1Gn为正交投影,对∀(uvutvt)∈V2×V1作如下分解

    其中

    根据引理2,对任意ε>0,存在mn>0,有

    取0 < ε < 1,用φ2=u2t+εu2ψ2=v2t+εv2,分别与(1)式中的两个式子在空间L2(Ω)中作内积,有

    类似(9)式作进一步估计,有

    此外

    结合(26),(27)式,Hölder不等式和Poincaré不等式,有

    结合(29)-(32)式,代入(28)式可得

    定义泛函

    ε充分小,使得

    ${{C}_{2}}=\min \left\{ \frac{{{\alpha }_{1}}}{4}-\varepsilon , \varepsilon \left( \frac{1}{2}-\frac{\varepsilon {{\alpha }_{1}}}{\lambda _{1}^{2}} \right), \frac{{{\alpha }_{2}}}{4}-\varepsilon , \varepsilon \left( \frac{1}{2}-\frac{\varepsilon {{\alpha }_{2}}}{{{\lambda }_{1}}} \right), \varepsilon \right\}$.

    所以,当tt1时,有

    根据Gronwall引理,可得

Reference (13)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return