-
加权黎曼流形是黎曼几何和共形几何等学科共同研究的对象之一,在证明庞加莱猜想的过程中,Perelman证明了Ricci流就是加权黎曼流形的梯度流.近年来,在加权黎曼流形的背景下,关于Ricci流、平均曲率流、孤立子等问题的研究较多(见文献[1-8]).下面将介绍加权黎曼流形的一些基本概念.
定义加权黎曼流形(Mn+1,g,e-fdv)上的张量
称Ricf为∞-Bakry-Emery张量(见文献[3, 9]).当f为常数时,Ricf=Ric.显然Ricf是Ricci张量在加权黎曼流形中的推广.
设Σn是加权黎曼流形(Mn+1,g,e-fdv)中的超曲面,则在(Mn+1,g,e-fdv)上选取局部标准正交标架{eA}A=1n+1,使得限制在Σn上时{ei}i=1n为切标架场,{en+1}为法标架场.记{ωA}A=1n+1为{eA}A=1n+1的对偶标架场,则Σn的第二基本型为
平均曲率为
记Hf为Σn的加权平均曲率,根据文献[10],有
这里
${\mathrm{\vec{n}}}$ 为Σn的单位外法向量场.若Hf=0,则称Σn是加权黎曼流形的f-极小超曲面.与此同时,对于Σn上的任一向量场X,加权散度算子[8]定义为于是加权Lapacian算子为
则Σn的第二加权体积变分为
其中
这里Jf为加权稳定算子(也称加权Jacobi算子).
对于Σn上加权稳定算子的第一特征值λ1,存在特征函数ρ∈C∞(Σ),使得
由(3)式可知,等价于
定义1 设Σn是加权黎曼流形(Mn+1,g,e-fdv)中的等距浸入超曲面,其上的加权稳定算子Jf由(3)式定义,Jf的第一特征值λ1为
近年来,对于加权黎曼流形上加权稳定算子的第一非零特征值估计问题的研究已取得了一系列重要进展.文献[12]研究了3维加权黎曼流形(M3,g,f)中闭曲面的加权稳定算子,得到了如下的结论:
定理1[12] (M3,g,e-fdv)是截面曲率Sec≥c的加权黎曼流形,且
$\text{Hess}~f\ge \frac{\text{d}f\otimes \text{d}f}{2m}$ ,Σ2是M3中具有常加权平均曲率Hf的闭曲面.则:(i)
${{\lambda }_{1}}\le -\frac{1}{2}\frac{H_{f}^{2}}{1+m}+4c$ ,等号成立当且仅当Σ2是全脐的,且$\text{Ric}\left( \mathrm{\vec{n}}, \mathrm{\vec{n}} \right)=2c, \text{d}f\left( {\mathrm{\vec{n}}} \right)=\frac{m}{1+m}{{H}_{f}}, \text{Hess}~f\left( \mathrm{\vec{n}}, \mathrm{\vec{n}} \right)=\frac{\text{d}f{{\left( {\mathrm{\vec{n}}} \right)}^{2}}}{2m}$ ;(ii)
${{\lambda }_{1}}\le -\frac{H_{f}^{2}}{1+2m}-4c+\frac{2}{\text{vo}{{\text{l}}_{f}}\left( \mathit{\Sigma } \right)}\int_{\mathit{\Sigma }}{K\text{d}{{v}_{f}}}$ ,等号成立当且仅当高斯曲率K为常数,且$\overline{Sec}=c, ~\text{d}f\left( {\mathrm{\vec{n}}} \right)=\frac{m}{1+m}{{H}_{f}}, ~\text{Hess }\!\!~\!\!\text{ }f\left( \mathrm{\vec{n}}, \mathrm{\vec{n}} \right)=\frac{\text{d}f{{\left( {\mathrm{\vec{n}}} \right)}^{2}}}{2m}$ .自然地,本文将定理1中的加权黎曼流形(M3,g,e-fdv)推广到更高维的情形,得到了如下结论:
定理2 (Mn+1,g,e-fdv)是截面曲率Sec≥c的加权黎曼流形,且
$\text{Hess}~f\ge \frac{\text{d}f\otimes \text{d}f}{nm}$ ,Σn是(Mn+1,g,e-fdv)中具有常加权平均曲率Hf的闭超曲面.则等号成立当且仅当Σn是全脐的,且
定义2 若加权稳定算子Jf的第一特征值λ1≥0,则超曲面Σn是强稳定的,否则Σn是不稳定的.
设Σn上的二阶无迹张量
其中I为恒等映射,通过计算,有
若|ϕ|=0,则Σn为全脐的,称二阶无迹张量ϕ为Σn的全脐张量.结合(3)式,则加权稳定算子即为
定理 2 的证明 对于任意的a,b∈
$\mathbb{R}$ 和k>-1,有等号成立当且仅当
$b=-\frac{k}{1+k}a$ .令
则
令u=1,结合(4),(6)式有
下面讨论定理2中(5)式等号成立的情形.
充分性 由于
${{\lambda }_{1}}=-\frac{H_{f}^{2}}{n\left( 1+m \right)}-nc$ ,因此以上证明过程中所有不等式均取等号,易知Σn为全脐的,且必要性 由于Σn为全脐的,
于是(1),(2)式为
结合(3)式可得
因此
定理2得证.
当f为常数时,易知加权平均曲率和∞-Bakry-Emery张量即为通常的平均曲率和Ricci张量,由此可以得到如下推论.
推论1 (Mn+1,g)是截面曲率Sec≥c的黎曼流形. Σn是Mn+1中具有常平均曲率H的闭超曲面.则
等号成立当且仅当Σn是全脐的,且
$\text{Ric}\left( \mathrm{\vec{n}}, \text{ }\mathrm{\vec{n}} \right)=nc$ .另一方面,考虑加权黎曼流形中超曲面的稳定性,根据定义2和定理2,有以下的推论:
推论2 (Mn+1,g,e-fdv)是截面曲率Sec≥c的加权黎曼流形,且
$\text{Hess}~f\ge \frac{\text{d}f\otimes \text{d}f}{nm}$ ,Σn是(Mn+1,g,e-fdv)中具有常加权平均曲率Hf的闭超曲面.则:(i) 当c≥0,Hf≠0时,超曲面Σn为不稳定的;
(ii) 当c=0,且超曲面Σn强稳定时,Hf=0,即Σn为(Mn+1,g,e-fdv)的f-极小超曲面.
On the First Stability Eigenvalue of Hypersurfaces in the Weighted Riemannian Manifolds
- Received Date: 26/06/2019
- Available Online: 20/04/2020
-
Key words:
- weighted Riemannian manifolds /
- first stability eigenvalue /
- weighted stability operator /
- Bakry-Emery-Ricci tensor
Abstract: In this paper, it's gived a weighted volume dvf=e-fdv for weighted Riemannian manifold (Mn+1, g, e-f dv) on Riemannian manifold (Mn+1, g), where f is the smooth and real function on Mn+1, dv is volume of Mn+1, Σn is a compact infinitesimal hypersurface on weighted Riemann manifold (Mn+1, g, e-f dv)with constant weighted mean curvature Hf. Under the condition of section curvature Sec≥c, the first eigenvalue problem of the weighted stability operator Jf on the hypersurface is studied. The equality of inequality ${{\left( a+b \right)}^{2}}\ge \frac{{{a}^{2}}}{1+k}-\frac{{{b}^{2}}}{k}$ is established if and only if $b=-\frac{k}{1+k}a$, where any a, b∈$\mathbb{R}$ and k>-1, upper bound on the first stable eigenvalue on the hypersurface is obtained. When f is a constant, the weighted Riemannianmanifold returns to the usual Riemannian manifold, and the upper bound of the first nonzero Eigenvalue of the stable operator J is obtainedan.Furthermore, the stability of the hypersurface can be discussed from the obtained upper bound.