Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2020 Volume 45 Issue 10
Article Contents

Wei ZHAO. Positive Solutions of m-Point Boundary Value Problem for Singular Fourth-Order Differential Equation[J]. Journal of Southwest China Normal University(Natural Science Edition), 2020, 45(10): 28-34. doi: 10.13718/j.cnki.xsxb.2020.10.006
Citation: Wei ZHAO. Positive Solutions of m-Point Boundary Value Problem for Singular Fourth-Order Differential Equation[J]. Journal of Southwest China Normal University(Natural Science Edition), 2020, 45(10): 28-34. doi: 10.13718/j.cnki.xsxb.2020.10.006

Positive Solutions of m-Point Boundary Value Problem for Singular Fourth-Order Differential Equation

More Information
  • Received Date: 16/02/2020
    Available Online: 20/10/2020
  • MSC: O175.8

  • The existence of positive solutions for singular fourth-order \lt i \gt m \lt /i \gt -point boundary value problem $ \left\{ {\begin{array}{*{20}{c}} {{u^{\left( 4 \right)}}\left( t \right) + h\left( t \right)f\left( u \right) = 0}\ {u\left( 0 \right) = u\left( 1 \right) = u''\left( 0 \right) = 0}\ {u''\left( 1 \right) = \sum\limits_{i = 1}^{m - 2} {{\beta _i}u''\left( {{\eta _i}} \right)} } \end{array}} \right. $ has been obtained, where \lt i \gt η \lt sub \gt i \lt /sub \gt \lt /i \gt ∈(0, 1), 0 \lt \lt i \gt η \lt /i \gt \lt sub \gt 1 \lt /sub \gt \lt \lt i \gt η \lt /i \gt \lt sub \gt 2 \lt /sub \gt \lt … \lt \lt i \gt η \lt /i \gt \lt sub \gt \lt i \gt m \lt /i \gt -2 \lt /sub \gt \lt 1; \lt i \gt β \lt sub \gt i \lt /sub \gt \lt /i \gt ∈[0, ∞) with \lt inline-formula \gt $\sum\limits_{i = 1}^{m - 2} {{\beta _i}{\eta _i} \lt 1} $ \lt /inline-formula \gt . The function \lt i \gt h \lt /i \gt ( \lt i \gt t \lt /i \gt ): (0, 1)→[0, +∞) is continuous, not equal to zero and allowed to be singular at \lt i \gt t \lt /i \gt =0 or \lt i \gt t \lt /i \gt =1. The function \lt i \gt f \lt /i \gt : [0, +∞)→[0, +∞) is continuous. In this paper, firstly the Green function of the above singular fourth-order differential equation \lt i \gt m \lt /i \gt -point boundary value problem has been constructed, and the properties of the Green function been obtained. Secondly, the cone on Banach space and its convex functional on cone have been constructed. By using the fixed point index theorem on convex functional to calculate the fixed point index, the conclusion that there is at least one positive solution to the above boundary value problem has been obtained. Finally, an example has been given to illustrate the application of the main theorem.
  • 加载中
  • [1] 崔玉军, 赵聪.四阶微分方程奇异边值问题解的唯一性[J].山东大学学报(理学版), 2017, 52(2): 73-76, 96.

    Google Scholar

    [2] 陆海霞, 孙经先.一类四阶非线性微分方程两点边值问题的正解[J].数学的实践与认识, 2014, 44(8): 229-235.

    Google Scholar

    [3] 杨忠贵, 韩晓玲, 王姗.一类非线性四阶三点边值问题正解的存在性[J].陕西师范大学学报(自然科学版), 2019, 47(3): 69-72.

    Google Scholar

    [4] 达举霞, 韩晓玲, 霍梅.具有变号格林函数的四阶三点边值问题正解的存在性[J].吉林大学学报(理学版), 2016, 54(4): 695-699.

    Google Scholar

    [5] 施恂栋, 刘文斌.一类非线性四阶微分方程三点边值问题的可解性[J].淮阴师范学院学报(自然科学版), 2013, 12(2): 95-98.

    Google Scholar

    [6] 张亚莉.一类非线性四阶常微分方程边值问题正解的存在性[J].四川大学学报(自然科学版), 2019, 56(6): 1004-1008.

    Google Scholar

    [7] 纪宏伟.一个典型弹性梁方程涉及第一特征值的正解[J].西南师范大学学报(自然科学版), 2019, 44(1): 14-19.

    Google Scholar

    [8] 邢艳元, 郭志明.一类Caputo分数阶脉冲微分方程混合边值问题解的存在唯一性[J].西南大学学报(自然科学版), 2019, 41(8): 48-53.

    Google Scholar

    [9] 康淑瑰, 岳亚卿, 郭建敏.分数阶微分方程奇异系统边值问题正解的存在性[J].西南大学学报(自然科学版), 2019, 41(4): 104-108.

    Google Scholar

    [10] ZHANG G W, SUN J X, ZHANG T. Existence of Positive Solutions for a Class of Second-Order Two-Point Boundary Value Problem[J]. Positivty, 2008, 12(3): 547-554. doi: 10.1007/s11117-007-2159-6

    CrossRef Google Scholar

    [11] ZHANG G W, SUN J X. A Generalization of the Cone Expansion and Compression Fixed Point Theorem and Applications[J]. Nonlinear Analysis, 2007, 67(2): 579-586. doi: 10.1016/j.na.2006.06.003

    CrossRef Google Scholar

    [12] 郭大钧.非线性泛函分析[M]. 2版.济南:山东科学技术出版社, 2003: 21-41.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(652) PDF downloads(126) Cited by(0)

Access History

Other Articles By Authors

Positive Solutions of m-Point Boundary Value Problem for Singular Fourth-Order Differential Equation

Abstract: The existence of positive solutions for singular fourth-order \lt i \gt m \lt /i \gt -point boundary value problem $ \left\{ {\begin{array}{*{20}{c}} {{u^{\left( 4 \right)}}\left( t \right) + h\left( t \right)f\left( u \right) = 0}\ {u\left( 0 \right) = u\left( 1 \right) = u''\left( 0 \right) = 0}\ {u''\left( 1 \right) = \sum\limits_{i = 1}^{m - 2} {{\beta _i}u''\left( {{\eta _i}} \right)} } \end{array}} \right. $ has been obtained, where \lt i \gt η \lt sub \gt i \lt /sub \gt \lt /i \gt ∈(0, 1), 0 \lt \lt i \gt η \lt /i \gt \lt sub \gt 1 \lt /sub \gt \lt \lt i \gt η \lt /i \gt \lt sub \gt 2 \lt /sub \gt \lt … \lt \lt i \gt η \lt /i \gt \lt sub \gt \lt i \gt m \lt /i \gt -2 \lt /sub \gt \lt 1; \lt i \gt β \lt sub \gt i \lt /sub \gt \lt /i \gt ∈[0, ∞) with \lt inline-formula \gt $\sum\limits_{i = 1}^{m - 2} {{\beta _i}{\eta _i} \lt 1} $ \lt /inline-formula \gt . The function \lt i \gt h \lt /i \gt ( \lt i \gt t \lt /i \gt ): (0, 1)→[0, +∞) is continuous, not equal to zero and allowed to be singular at \lt i \gt t \lt /i \gt =0 or \lt i \gt t \lt /i \gt =1. The function \lt i \gt f \lt /i \gt : [0, +∞)→[0, +∞) is continuous. In this paper, firstly the Green function of the above singular fourth-order differential equation \lt i \gt m \lt /i \gt -point boundary value problem has been constructed, and the properties of the Green function been obtained. Secondly, the cone on Banach space and its convex functional on cone have been constructed. By using the fixed point index theorem on convex functional to calculate the fixed point index, the conclusion that there is at least one positive solution to the above boundary value problem has been obtained. Finally, an example has been given to illustrate the application of the main theorem.

  • 近几十年来,微分方程边值问题一直受到广泛的关注[1-12].而四阶常微分方程的边值问题可用来描述悬臂梁问题,以及弹性物理等工程实际问题,引起了许多学者的关注.对于四阶常微分方程边值问题正解的存在性,一些学者已经做了较多的研究[1-6],多数文献通过运用Krasnosel'skill不动点定理、锥拉伸与压缩不动点定理、迭合度理论、上下解方法等得到了四阶微分方程边值问题正解存在的结果.

    文献[1]研究了如下的奇异四阶微分方程两点边值问题:

    运用第一特征值的相关理论以及压缩映射原理,得到了上述问题正解的唯一存在性.

    文献[3]研究了如下的四阶微分方程三点边值问题:

    运用锥拉伸与压缩不动点定理,得到了上述问题正解的存在性.

    文献[5]研究了如下的四阶微分方程三点边值问题:

    运用Krasnosel'skill不动点定理,得到了上述问题正解的存在性.

    受上述结论的启发,本文将研究如下奇异四阶微分方程m点边值问题,即

    其中:ηi∈(0,1),0 < η1 < η2 < … < ηm-2 < 1;βi∈[0,∞)且$\sum\limits_{i = 1}^{m - 2} {{\beta _i}{\eta _i} < 1} $;允许h(t)在t=0或t=1处奇异.

    文中首先构建奇异四阶微分方程m点边值问题(1)的格林函数,并得到其相关性质;其次构建Banach空间上的锥及其锥上的凸泛函,运用凸泛函上的不动点指数定理来计算不动点指数,得到了边值问题(1)至少有一个正解的结论.据作者所知,未见有讨论上述问题的相关文献,且作者所用方法不同于以往文献.

    G(ts)为齐次微分方程u(4)(t)=0满足问题(1)中的边值条件下的格林函数,具体表示为

    其中

    引理1  函数g(ts)满足下面不等式:

      令

    故当0 ≤t≤1时,有

    $\frac{1}{4} \le t \le \frac{3}{4}$时,有

    为了方便,作如下假设条件:

    (H1) $$

    (H2) h:(0,1)→[0,+∞)连续,h(t)不恒等于0,允许h(t)在t=0,1处奇异;

    (H3) f:[0,+∞)→[0,+∞)连续.

    在Banach空间C[0, 1]中,其中范数为$\left\| u \right\| = \mathop {\max }\limits_{0 \le t \le 1} \left| {u\left( t \right)} \right|$,令

    PC[0, 1]上的正锥.取

    其中$l = \frac{1}{{128}}$.

    定义算子

    引理2  设条件(H1)-(H3)满足,则算子AP1P1全连续.

      由(2)式可知

    于是

    由(3)式,则有

    从而AP1P1,且A(P1)→P1.由Azela-Ascoli定理则知,算子AP1P1全连续.

    下面介绍有关凸泛函的两个不动点指数引理.

    定义1[10]  如果锥P上的泛函ρ$P\to \mathbb{R}$,对于∀xyPt∈[0, 1],满足

    则称ρ是锥P上的凸泛函.

    引理3[10]  设PE中的锥,ΩE中的有界开集,且θΩ.假设算子APΩP全连续,ρP→[0,+∞)是凸泛函,且满足ρ(θ)=0,并对∀xθρ(x)>0.如果ρ(Ax)≤ρ(x),且当xP∂Ω时,Axx,则不动点指数i(APΩP)=1.

    引理4[10]  设PE中的锥,ΩE中的有界开集.假设算子APΩP全连续,ρP→[0,+∞)是一致连续的凸泛函,且满足ρ(θ)=0,并对∀xθρ(x)>0.如果:

    (i) $\mathop {\inf }\limits_{x \in P \cap \partial \mathit{\Omega }} \rho \left( x \right) > 0$

    (ii) ρ(Ax)≥ρ(x),且对∀xP∂ΩAxx.

    则不动点指数i(APΩP)=0.

    显然有h0hτ>0.

    定理1  假设(H1)-(H3)成立,如果存在常数ab,使得当ab>0时满足:

    (i) b < a

    (ii) ∀ubl-1hτ-1f(u)≤h0-1u

    (iii) ∀ahτ-1luahτ-1l-1f(u)≥hτ-1u.

    则四阶边值问题(1)至少存在一个正解.

      令

    ρ1P1→[0,+∞)是一致连续的凸泛函,且ρ1(θ)=0.

    对于∀uP1\{θ},有

    Ω1={uC[0, 1]:ρ1(u) < b}.显然Ω1C[0, 1]上的开集,且θΩ1.

    如果uP1Ω1,则有

    因此有‖u‖≤b l-1hτ-1.这意味着P1Ω1是有界的.

    如果uP1∂Ω1,则ρ1(u)=b且‖u‖≤bl-1hτ-1,因此

    假设AP1∂Ω1上没有不动点,则由引理3知

    ρ2P1→[0,+∞)是一致连续的凸泛函,且ρ2(θ)=0,对于uP1\{θ},ρ2(u)>0.

    Ω2={uC[0, 1]:ρ2(u) < a}.显然Ω2C[0, 1]上的开集.

    如果uP1$\overline {{\mathit{\Omega }_2}} $,则有

    于是得‖u‖≤al-1hτ-1.这意味着P1Ω2是有界的.

    如果uP1∂Ω2,则ρ2(u)=a且‖u‖≤al-1hτ-1,由于

    所以‖u‖≥ahτ-1,于是

    所以

    假设AP1∂Ω2上没有不动点,由引理4知

    uP1$\overline {{\mathit{\Omega }_1}} $,有

    因此,P1$\overline {{\mathit{\Omega }_1}} $$ \subset {P_1} \cap {\mathit{\Omega }_2}$,于是进一步得

    AP1∩(Ω2\$\overline {{\mathit{\Omega }_1}} $)上至少有一个不动点,也即是四阶m点边值问题(1)至少存在一个正解.

    定理2  假设(H1)-(H3)成立,如果存在常数ab,使得当0 < b < a时满足:

    (i) b < al2hτ2h0-1

    (ii) ∀blhτ-1ubl-1hτ-1f(u)≥hτ-1u

    (iii) ∀ual-1f(u)≤ah0-1.

    则四阶边值问题(1)至少存在一个正解.

      因为

    对∀ubl-1hτ-1,有

    于是,ρiP1→[0,+∞)是一致连续凸泛函,且ρi(θ)=0(i=1,2).

    uP1\{θ},有

    Ω1={uC[0, 1]:ρ2(u) < b},Ω2={uC[0, 1]:ρ1(u) < a}.显然Ω1Ω2C[0, 1]上的开集,且θΩ1.

    如果uP1$\overline {{\mathit{\Omega }_1}} $,则有

    因此,‖u‖≤bl-1hτ-1,这意味着P1Ω1是有界的.进一步有

    所以P1$\overline {{\mathit{\Omega }_1}} $$ \subset {P_1}$Ω2.

    如果uP1$\overline {{\mathit{\Omega }_2}} $,则有

    于是‖u‖≤al-1,这意味着P1Ω2是有界的.

    假设AP1∂Ω1P1Ω2上没有不动点.

    如果uP1∂Ω1,则b=ρ2(u)≤‖uhτ,且

    进一步则有

    所以由引理4知

    如果uP1∂Ω2,则

    由引理3知

    综上所述,

    AP1∩(Ω2\$\overline {{\mathit{\Omega }_1}} $)上至少有一个不动点.也即四阶m点边值问题(1)至少存在一个正解.

    例1  考虑如下四阶边值问题

    其中${\eta _1} = \frac{1}{6}, {\eta _2} = \frac{1}{5}, {\eta _3} = \frac{1}{4}, {\beta _1} = \frac{3}{2}, {\beta _2} = \frac{4}{3}, {\beta _3} = \frac{6}{5}, {D^{ - 1}} \approx 0.909\;1.$.

    $h\left( t \right) = \frac{1}{{{t^{\frac{2}{3}}}\left( {1 - t} \right)}}$f(u)=0.02·(e0.2u-1),a≈48.883 7,b≈0.001 113 3.根据定理1知四阶微分方程的五点边值问题(5)至少存在一个正解.

Reference (12)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return