Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2020 Volume 45 Issue 12
Article Contents

GAO Yun-long, LIN Rong-rui, SHE Lian-bing. On Blow-up of Solutions for a Class Logarithmic Nonlinear Wave Equation with Double Memory and Delay Terms[J]. Journal of Southwest China Normal University(Natural Science Edition), 2020, 45(12): 20-27. doi: 10.13718/j.cnki.xsxb.2020.12.005
Citation: GAO Yun-long, LIN Rong-rui, SHE Lian-bing. On Blow-up of Solutions for a Class Logarithmic Nonlinear Wave Equation with Double Memory and Delay Terms[J]. Journal of Southwest China Normal University(Natural Science Edition), 2020, 45(12): 20-27. doi: 10.13718/j.cnki.xsxb.2020.12.005

On Blow-up of Solutions for a Class Logarithmic Nonlinear Wave Equation with Double Memory and Delay Terms

More Information
  • Corresponding author: SHE Lian-bing
  • Received Date: 08/10/2019
    Available Online: 20/12/2020
  • MSC: O175.29

  • In this paper, blow-up of solutions have been concerned for a class logarithmic nonlinear wave equation with double memory and delay terms. Under certain assumptions, the convexity method has been used to prove that when the initial energy function E(0) < 0, the energy solution of the equation blow-up at finite time.
  • 加载中
  • [1] TANG W S. Asymptotic Behavior for a Viscoelastic Wave Equation with a Time-Varying Delay Term [J]. Journal of Partial Differential Equations, 2016, 29(1): 22-35.

    Google Scholar

    [2] PEYRAVI A. General Stability and Exponential Growth for a Class of Semi-Linear Wave Equations with Logarithmic Source and Memory Terms [J]. Applied Mathematics and Optimization, 2020, 81(2): 545-561.

    Google Scholar

    [3] KAFINI M, MUSTAFA M I. A Blow-up Result in a Cauchy Viscoelastic Problem With a Delayed Strong Damping [J]. Dynamics of Continuous, Discrete and Impulsive Systems, 2018, 25: 357-367.

    Google Scholar

    [4] KAFINI M, MESSAOUDI S. Local Existence and Blow up of Solutions to a Logarithmic Nonlinear Wave Equation with Delay [J]. Applicable Analysis, 2020, 99(3): 530-547.

    Google Scholar

    [5] MELLAH M, HAKEM A. Global Existence, Uniqueness, and Asymptotic Behavior of Solution for the Euler-Bernoulli Viscoelastic Equation [J]. Open Journal of Mathematical Analysis, 2019, 3(1): 42-51.

    Google Scholar

    [6] DANG J, HU Q Y, ZHANG H W. Global Nonexistence for a Nonlinear Viscoelastic Equation With Nonlinear Damping and Velocity-Dependent Material Density [J]. Journal of Function Spaces, 2019, 2019: 1-7.

    Google Scholar

    [7] 江蓉华, 周军.一类带有分数拉普拉斯算子的抛物方程的解在任意初始能量下的爆破性[J].西南大学学报(自然科学版), 2020, 42(5): 121-125.

    Google Scholar

    [8] 陈勇明, 杨晗.一类非线性四阶波动方程解的爆破[J].西南师范大学学报(自然科学版), 2004, 29(4): 545-548.

    Google Scholar

    [9] 李晓营, 林春进, 徐国静.一类带有阻尼项Burgers方程的Cauchy问题[J].西南师范大学学报(自然科学版), 2018, 43(4): 20-23.

    Google Scholar

    [10] 张宏伟, 呼青英.具时滞和记忆项的非线性粘弹性波动方程解的爆破——纪念阳名珠先生[J].应用泛函分析学报, 2017, 19(1): 71-79.

    Google Scholar

    [11] 高云柱, 孟秋, 郭微.具变指数黏弹性波动方程能量解的爆破[J].吉林大学学报(理学版), 2018, 56(3): 503-507.

    Google Scholar

    [12] MESSAOUDI S A. Blow-up of Positive-Intial-Energy Solutions of a Nonlinear Viscoelast [J]. Journal of Mathematical Analysis and Applications, 2006, 320(2): 902-915.

    Google Scholar

    [13] 王艳萍, 李嘉.一类非线性双曲型方程Cauchy问题解的爆破[J].西南大学学报(自然科学版), 2007, 29(10): 25-28.

    Google Scholar

    [14] 董莉.两类非线性波动方程解的爆破时间的下确界[J].山东大学学报(理学版), 2017, 52(4): 56-67.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(573) PDF downloads(95) Cited by(0)

Access History

Other Articles By Authors

On Blow-up of Solutions for a Class Logarithmic Nonlinear Wave Equation with Double Memory and Delay Terms

    Corresponding author: SHE Lian-bing

Abstract: In this paper, blow-up of solutions have been concerned for a class logarithmic nonlinear wave equation with double memory and delay terms. Under certain assumptions, the convexity method has been used to prove that when the initial energy function E(0) < 0, the energy solution of the equation blow-up at finite time.

  • 近年来,非线性波动方程受到许多学者的关注,其主要研究为局部或全局解的存在性、唯一性、能量衰退以及解的爆破性质等[1-10].当波动方程没有非线性项,且α=0,g1=0,γ=0时,文献[1]通过建立Lyapunov函数证明了其能量解满足指数衰退.当p=2且不考虑线性延迟弱阻尼项时,文献[2]在一定假设条件下,证明了方程的能量解满足指数型衰减.当非线性波动方程含有强延迟阻尼和非线性项时,在$ \int_0^t {g\left( s \right){\rm{d}}s < \frac{{{p^2}}}{{{p^2} + 1}}} $E(0) < 0的假设条件下,文献[3]证明了解在有限时间点爆破.在没有记忆项,且非线性项不是对数形式时,文献[9]也证明了解在有限时间点爆破.文献[4]在方程不含强阻尼和双记忆项,且非线性项是对数形式的条件下,证明了其存在局部解

    并进一步利用凸性方法得到能量解在有限时间点爆破.关于爆破性质的研究可参考文献[5-14].

    受到以上工作的启发,将研究以下含双记忆和时滞项的非线性粘弹性对数波动方程解的爆破性:

    其中$ \mathit{\Omega} \in {{\mathbb{R}}^{n}}\left( n=1, 2, 3 \right) $,函数$ M\left( \parallel \nabla u{{\parallel }^{2}} \right)={{\xi }_{0}}+{{\xi }_{1}}\parallel \nabla u{{\parallel }^{2q}} $,系数lαβγqk是非负实数,记忆项g1g2满足的条件将在后文给出,方程(1)中的卷积定义为

    通过构造凸函数,利用凸性方法证明了当初始能量小于0时,方程(1)的解在有限时间点的爆破性.证明过程中将双记忆项和非线性对数项考虑在同一系统中,克服了处理非线性对数项的难度,推广了现有的研究结果.

1.   假设条件与预备知识
  • 文中所讨论的函数空间为Sobolev空间H2(Ω)和一般赋范空间Lp(Ω)(p≥2). Lp(Ω)空间的范数和内积分别记为

    特别地,当p=2时,记‖·‖=‖·‖L2(Ω).因此,方程(1)的解空间记为

    方程(1)中g1g2p的假设条件参考文献[5]给出:

    (A1) $ {{g}_{1}}:{{\mathbb{R}}_{+}}\to {{\mathbb{R}}_{+}} 和 {{g}_{2}}:{{\mathbb{R}}_{+}}\to {{\mathbb{R}}_{+}} $都是有界函数,且满足

    (A2) 存在正常数α1α2α3η1以及η2,使得

    (A3) 当n≤4时,2 < p < +∞;当n≥5时,$ 2<p\le \frac{2n-4}{n-4} $.

    类似文献[4]的方法对方程(1)进行变换,引入新变量

    故有

    则方程(1)可化为

    由卷积的定义可得以下引理:

    引理1[5]   对于任意的$ g, \phi \in \left( \left[ 0, \left. +\infty \right), \mathbb{R} \right. \right) $,有

    其中

    类似文献[4]中定理2.2和文献[5]中定理2的证明可得下列局部解的存在性定理:

    定理1   若条件(A1)-(A3)成立,则当$ {{\mu }_{1}}>\frac{|{{\mu }_{2}}|}{2} 时 , \forall \left( {{u}_{0}}\left( x \right), {{u}_{1}}\left( x \right), {{f}_{0}}\left( x, -\rho \tau \right) \right)\in \mathscr{H} $,总存在T>0,使得方程(2)具有唯一局部解u(xt),且满足

2.   解的爆破定理
  • 为了证明以下引理和解的爆破定理,对于方程(2)的任意一个解,定义能量函数为

    其中

    则初始能量函数为

    引理2   若(u(xt),z(xρt))是方程(2)的解,则能量函数E(t)是单调递减的,且存在常数$ 0 <{{C}_{1}}\le \frac{\zeta }{2\tau }-\frac{|{{\mu }_{2}}|}{2} $,使能量函数(3)满足

      将方程(2)中第一个方程两端同时乘以ut,并在Ω上进行分部积分,再运用引理1,可得

    ζz(xρt)乘方程(2)中的第二个方程,并在Ω×(0,1)上积分,有

    对(7)式中等号右边最后一项采用Young不等式,并与(8)式相加,可得

    再由条件(A1)-(A2)和(4)式知E(t)是单调递减的,且存在$ 0 <{{C}_{1}}\le \frac{\zeta }{2\tau }-\frac{|{{\mu }_{2}}|}{2} $,使得(6)式成立.

    定理2   若条件(A1)-(A2),(3),(4)式以及初始能量函数

    成立,且:

    (ⅰ)当n≤4时,

    (ⅱ)当n≥5时,

    则方程(2)的解在有限时间点处爆破.

      首先定义函数

    由(6)式知

    所以

    根据条件(A1)-(A2),进一步得

    其中

    G(t)求导,可得

    分别对(13)式中第二个等号右边的第五、六、八项用Young不等式,可得

    将(14),(15),(16)式代入(13)式中,得

    任取满足如下条件的正实数a

    在(17)式不等号右边加上p(1-a)(H(t)+E(t)),再由(6)式和(10)式,可得

    选择合适的δ0δ1以及充分大的N>0,使得

    因此,(19)式化简为

    再由(11),(12)式,运用文献[4]的推理3.1、引理3.2,可得

    因此

    L(t)求导,并将(3),(22)式代入,得

    取充分大的N,及足够小的ε,使得

    根据θa的取值范围和条件(A3),存在C>0,可将(23)式化为

    根据不等式(a+b)p≤2p-1(ap+bp)(其中a>0,b>0,p≥1),有

    利用Hölder不等式、Young不等式、嵌入$ {{L}^{p}}\left( \Omega \right)\circlearrowleft {{L}^{l+2}}\left( \Omega \right) $以及$ \theta <\frac{p-\left( l+2 \right)}{p\left( l+2 \right)} $,有

    由Young不等式,$ 0 <\theta <\frac{q}{2\left( 1+q \right)}<\frac{p-2}{2p} $以及(11)式,得

    同理可得

    利用Young不等式及(29)式,有

    将(28)-(30)式代入(26)式,并化简,得

    最后由(24),(31)式可得,存在Λ>0使得

    对(32)式在(0,t)上积分,有

    从而由L(0)>0以及(33)式知$ \mathop {\lim }\limits_{t \to {T^*}} {\mkern 1mu} L\left( t \right) = + \infty $,其中$ {{T}^{*}}\le \frac{\theta }{1-\theta }\mathit{\Lambda} {{L}^{-\frac{\theta }{1-\theta }}}\left( 0 \right) $.

Reference (14)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return