Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2021 Volume 46 Issue 11
Article Contents

SU Ziyang, WANG Rongbo. On Optimality of Generalized Convex Multi-objective Programming[J]. Journal of Southwest China Normal University(Natural Science Edition), 2021, 46(11): 1-7. doi: 10.13718/j.cnki.xsxb.2021.11.001
Citation: SU Ziyang, WANG Rongbo. On Optimality of Generalized Convex Multi-objective Programming[J]. Journal of Southwest China Normal University(Natural Science Edition), 2021, 46(11): 1-7. doi: 10.13718/j.cnki.xsxb.2021.11.001

On Optimality of Generalized Convex Multi-objective Programming

More Information
  • Corresponding author: WANG Rongbo
  • Received Date: 21/10/2020
    Available Online: 20/11/2021
  • MSC: O221.2

  • With the help of the Clarke generalized gradient and the related properties of convexfunctionals, some generalized convex functions have been given: generalized (C, α)-type I convex functions, generalized strict quasi-(C, α)-type I convex functions, and generalized strict quasi-pseudo-(C, α)-type I convex functions. Under these new generalized convexities, some sufficient condition of optimality for a class of multi-objective programming problems have been obtained.
  • 加载中
  • [1] YUAN D H, LIU X L, CHINCHULUUN A, etal. Nondifferentiable Minimax Fractional Programming Problems with (C, A, P, D)-Convexity [J]. Journal of Optimization Theory and Applications, 2006, 129(1): 185-199.

    Google Scholar

    [2] LONG X J. Optimality Conditions and Duality for Nondifferentiable Multiobjective Fractional Programming Problems with (C, Α, Ρ, D)-Convexity [J]. Journal of Optimization Theory and Applications, 2011, 148(1): 197-208. doi: 10.1007/s10957-010-9740-z

    CrossRef Google Scholar

    [3] MISHRA S K, JAISWAL M, HOAI AN L T. Optimality Conditions and Duality for Nondifferentiable Multiobjective Semi-Infinite Programming Problems with Generalized (C, α, ρ, d)-Convexity [J]. Journal of Systems Science and Complexity, 2015, 28(1): 47-59. doi: 10.1007/s11424-015-2233-2

    CrossRef Google Scholar

    [4] 李娜, 贺莉. 基于B-(C, α)-Ⅰ型广义凸多目标优化问题的充分条件[J]. 长春师范大学学报, 2015, 34(4): 1-4.

    Google Scholar

    [5] 王雪峰, 王芮婕, 高晓艳. (V, η)-I型对称不变凸多目标规划的对偶性[J]. 山东大学学报(理学版), 2019, 54(4): 116-126.

    Google Scholar

    [6] CLARKE F H. Optimization and Nonsmooth Analysis[M]. New York: John Wiley, 1983.

    Google Scholar

    [7] 林锉云, 董加礼. 多目标优化的方法与理论[M]. 长春: 吉林教育出版社, 1992.

    Google Scholar

    [8] 杨勇, 连铁艳, 穆瑞金. (F, b, α, ε)-G凸分式半无限规划问题的ε-最优性[J]. 西南师范大学学报(自然科学版), 2008, 33(6): 1-4.

    Google Scholar

    [9] 王荣波, 冯强, 刘瑞. 一类多目标半无限规划的最优性与对偶性[J]. 西南大学学报(自然科学版), 2017, 39(3): 55-61.

    Google Scholar

    [10] 严建军, 李钰, 杨帆, 等. 关于一类多目标半无限规划的最优性条件[J]. 贵州大学学报(自然科学版), 2019, 36(2): 16-21.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(826) PDF downloads(132) Cited by(0)

Access History

Other Articles By Authors

On Optimality of Generalized Convex Multi-objective Programming

    Corresponding author: WANG Rongbo

Abstract: With the help of the Clarke generalized gradient and the related properties of convexfunctionals, some generalized convex functions have been given: generalized (C, α)-type I convex functions, generalized strict quasi-(C, α)-type I convex functions, and generalized strict quasi-pseudo-(C, α)-type I convex functions. Under these new generalized convexities, some sufficient condition of optimality for a class of multi-objective programming problems have been obtained.

  • 对于最优化领域中的多目标最优化问题的研究近些年来是一个焦点,且取得了很大成果,许多学者将凸函数进行了推广,得到了广义凸函数类. 文献[1-3]先提出了(Cαρd)-凸函数,接着定义了广义(Cαρd)型广义凸函数;文献[4]给出了B-(Cα)-I型广义凸函数,并给出了B-(Cα)-I型一系列广义凸函数的定义和最优性条件;文献[5]定义了(Vη)-I型对称不变凸函数.

    本文在文献[4-5]的基础上引入了一类带有支撑函数的广义(Cα)-I型凸函数,利用Clarke广义梯度并在新广义凸性的情况下,对一类多目标规划问题进行了讨论和研究,并得出了若干个最优性结果.

1.   基本概念
  • 考虑下面多目标优化问题

    其中:X${{\mathbb{R}}^{n}}$上的非空开集;令K={1,2,…,k},M={1,2,…,m},fi(x):X$\mathbb{R}$iKgj(x):X$\mathbb{R}$jMfi(x)和gj(x)皆为x0X处局部Lipschitz函数;CiDj${{\mathbb{R}}^{n}}$中对于每一个iKjM的紧凸集.

    对于∀xy${{\mathbb{R}}^{n}}$x$\leqq $y$\Leftrightarrow $xi$\leqq $yixy$\Leftrightarrow $xi$\leqq $yi,但xyx < y$\Leftrightarrow $xi<yii=1,…,n.

    X0={xX|gj(x)+s(x|Dj)$\leqq $0,jM}为MVP的可行解集.

    J(x0)={j|gj(x0)+s(x0|Dj)=0},其中s(x|Ci)和s(x|Dj)表示在X上的支撑函数,其定义如下:

    本文采用如下符号:

    定义1 [6]  设X${{\mathbb{R}}^{n}}$中的开集,函数fX${{\mathbb{R}}^{n}}$xX上是局部Lipschitz的,若

    存在,则称此极限为函数fx处沿方向d的Clarke广义方向导数,记作

    并记fx处沿方向d的Clarke广义次梯度为

    定义2 [7]  (弱有效解)设x*X0,如果不存在xX0,使得

    则称x*是MVP的弱有效解.

    定义3 [4]  (凸泛函线性定义)设X${{\mathbb{R}}^{n}}$中的开集,若对任意固定的(xy)∈${{\mathbb{R}}^{n}}$×${{\mathbb{R}}^{n}}$,∀λ∈(0,1),∀z1z2${{\mathbb{R}}^{n}}$,有

    则称函数CX×X×${{\mathbb{R}}^{n}}$$\mathbb{R}$${{\mathbb{R}}^{n}}$上是关于第3个变量的凸泛函.

    性质1 [4]  CX×X×${{\mathbb{R}}^{n}}$$\mathbb{R}$${{\mathbb{R}}^{n}}$上是关于第3个变量的凸泛函,则对∀λi∈(0,1),$\sum\limits_{i=1}^{n}{{{\lambda }_{i}}}=1$,∀zi${{\mathbb{R}}^{n}}$,有$C\left(\boldsymbol{x}, \boldsymbol{y}; \sum\limits_{i=1}^{n} \lambda_{i} z_{i}\right) \leqslant \sum\limits_{i=1}^{n} \lambda_{i} C\left(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{z}_{i}\right)$.

    注1   特殊地,若λ=0,则C(xyλz)=0,z${{\mathbb{R}}^{n}}$.

    定义4  如果存在aibjα,使得

    成立,则称(fi(x)+xTωigj(x)+xTυj)在xX处是广义(Cα)-I型凸函数.

    注2   上述定义中,如果α(xu)=1,C[xuy]=yη(xu),ξi换成fis(u),ζj换成gjs(u)就能够得到文献[5]中相应的不变凸函数.

    定义5  如果存在aibjα,使得

    成立,则称(fi(x)+xTωigj(x)+xTυj)在uX处是广义严格拟(Cα)-I型凸函数.

    定义6   如果存在aibjα,使得

    称(fi(x)+xTωigj(x)+xTυj)在uX处是广义严格伪拟(Cα)-I型凸函数.

2.   最优性条件
  • 定理1   假设x0X,如果满足下列条件

    (Ⅰ) (fi(x)+xTωigj(x)+xTυj)在x0X处是广义(Cα)-I型凸函数.

    (Ⅱ) 存在λ=(λ1λ2,…,λk)≥0,μ=(μ1μ2,…μm)$\geqq $0,使得

    a) $0=\sum\limits_{i=1}^{k} \lambda_{i}\left(\xi_{i}+\boldsymbol{\omega}_{i}\right)+\sum\limits_{j=1}^{m} \mu_{j}\left(\zeta_{j}+\boldsymbol{v}_{i}\right), \exists \xi_{i} \in \partial f_{i}\left(\boldsymbol{x}_{0}\right), \exists \zeta_{j} \in \partial g_{j}\left(\boldsymbol{x}_{0}\right)$

    b) $\sum\limits_{j=1}^{m} \mu_{j}\left(g_{j}(\boldsymbol{x})+\boldsymbol{x}^{\mathrm{T}} \boldsymbol{v}_{j}\right)=0$

    (Ⅲ) $a_{i}\left(\overline{\boldsymbol{x}}, \boldsymbol{x}_{0}\right)>0, b_{j}\left(\overline{\boldsymbol{x}}, \boldsymbol{x}_{0}\right)>0$

    (Ⅳ) $\left(\sum\limits_{i=1}^{k} \lambda_{i} \rho_{i}+\sum\limits_{j=1}^{m} \mu_{j} \tau_{j}\right)\left\|\theta\left(\overline{\boldsymbol{x}}, \boldsymbol{x}_{0}\right)\right\|^{\sigma} \geqq 0$.

    x0是MVP的弱有效解.

      假设x0不是MVP的弱有效解,则存在xX0使得

    由(7)式得

    则有

    由条件(Ⅲ)可知

    由条件(Ⅰ)可知

    由(9)式知

    也即

    jJ(x0)时

    也即

    由条件(Ⅰ)知

    jJ(x0)时,由b)知μj=0,根据(11)式得

    等价于

    将(10)式和(12)式相加并结合条件(Ⅳ)得

    ${\mathit{\Gamma}}=\sum\limits_{i=1}^{k} \lambda_{i}+\sum\limits_{j=1}^{m} \mu_{j}$,由定义3以及性质1得

    由a)得

    这与(13)式矛盾.

    x0是MVP的弱有效解.

    定理2   假设x0X,如果满足下列条件

    (Ⅰ) (fi(x)+xTωigj(x)+xTυj)在x0X处是广义严格拟(Cα)-I型凸函数.

    (Ⅱ) 存在λ=(λ1λ2,…,λk)≥0,μ=(μ1μ2,…μm)$\geqq $0,使得下列条件成立:

    a) $0=\sum\limits_{i=1}^{k} \lambda_{i}\left(\xi_{i}+\boldsymbol{\omega}_{i}\right)+\sum\limits_{j=1}^{m} \mu_{j}\left(\zeta_{j}+\boldsymbol{v}_{i}\right), \exists \xi_{i} \in \partial f_{i}\left(\boldsymbol{x}_{0}\right), \exists \zeta_{j} \in \partial g_{j}\left(\boldsymbol{x}_{0}\right)$

    b) $\sum\limits_{j=1}^{m} \mu_{j}\left(g_{j}(\boldsymbol{x})+\boldsymbol{x}^{\mathrm{T}} \boldsymbol{v}_{j}\right)=0$

    (Ⅲ) $a_{i}\left(\overline{\boldsymbol{x}}, \boldsymbol{x}_{0}\right)>0, b_{j}\left(\overline{\boldsymbol{x}}, \boldsymbol{x}_{0}\right)>0$

    (Ⅳ) $\left(\sum\limits_{i=1}^{k} \lambda_{i} \rho_{i}+\sum\limits_{j=1}^{m} \mu_{j} \tau_{j}\right)\left\|\theta\left(\overline{\boldsymbol{x}}, \boldsymbol{x}_{0}\right)\right\| \sigma \geqq 0$.

    x0是MVP的弱有效解.

      假设x0不是MVP的弱有效解,则存在xX0使得

    由(14)式得

    则有

    由条件(Ⅲ)可知

    由(16)式和条件(Ⅰ)可得

    也即

    jJ(x0)时,gj(x0)+x0Tυj=gj(x0)+s(x0|Dj)=0,即

    由条件(Ⅰ)知

    jJ(x0)时,由b)知μj=0,根据(18)式得

    等价于

    将(17)式和(19)式相加并结合(Ⅳ)得

    ${\mathit{\Gamma}}=\sum\limits_{i=1}^{k} \lambda_{i}+\sum\limits_{j=1}^{m} \mu_{j}$,由定义3以及性质1得

    由a)得

    这与(20)式矛盾,则x0是MVP的弱有效解.

    定理3   假设x0X,如果满足下列条件

    (Ⅰ) (fi(x)+xTωigj(x)+xTυj)在x0X处是广义严格伪拟(Cα)-I型凸函数.

    (Ⅱ) 存在λ=(λ1λ2,…,λk)≥0,μ=(μ1μ2,…μm)$\geqq $0,使得下列条件成立:

    a) $0=\sum\limits_{i=1}^{k}{{{\lambda }_{i}}}\left({{\xi }_{i}}+{{\mathrm{ }\!\!\omega\!\!\text{ }}_{i}} \right)+\sum\limits_{j=1}^{m}{{{\mu }_{j}}}\left({{\zeta }_{j}}+{{\mathrm{v}}_{i}} \right), \exists {{\xi }_{i}}\in \partial {{f}_{i}}\left({{x}_{0}} \right), \exists {{\zeta }_{j}}\in \partial {{g}_{j}}\left({{\mathrm{x}}_{0}} \right)$

    b) $\sum\limits_{j=1}^{m} \mu_{j}\left(g_{j}(\boldsymbol{x})+\boldsymbol{x}^{\mathrm{T}} \boldsymbol{v}_{j}\right)=0$

    (Ⅲ) $a_{i}\left(\overline{\boldsymbol{x}}, \boldsymbol{x}_{0}\right)>0, b_{j}\left(\overline{\boldsymbol{x}}, \boldsymbol{x}_{0}\right)>0$

    (Ⅳ) $\left(\sum\limits_{i=1}^{k} \lambda_{i} \rho_{i}+\sum\limits_{j=1}^{m} \mu_{j} \tau_{j}\right)\left\|\theta\left(\overline{\boldsymbol{x}}, \boldsymbol{x}_{0}\right)\right\|^{\sigma} \geqq 0$.

    x0是MVP的弱有效解.

      假设x0不是MVP的弱有效解,则存在xX0使得,

    由(21)式得fi(x0)+x0Tωi=fi(x0)+s(x0|Ci)>fi(x)+s(x|Ci)=fi(x)+xTωi,则fi(x)+xTωi-(fi(x0)+x0Tωi) < 0.

    由条件(Ⅲ)可知

    由(23)式和条件(Ⅰ)可得C[xx0α(xx0)(ξi+ωi)]+ρiθ(xx0)‖σ < 0,即

    jJ(x0)时,gj(x0)+x0Tυj=gj(x0)+s(x0|Dj)=0,即-(gj(x0)+x0Tυj)=0,jJ(x0),-bj(xx0)[gj(x0)+x0Tυj]=0,jJ(x0).

    由条件(Ⅰ)知

    jJ(x0)时,由b)知μj=0,根据(25)式得,

    等价于

    将(24)式和(26)式相加并结合条件(Ⅳ)得

    ${\mathit{\Gamma}}=\sum\limits_{i=1}^{k} \lambda_{i}+\sum\limits_{j=1}^{m} \mu_{j}$,由定义3以及性质1得

    由a)得

    这与(27)式矛盾,则x0是MVP的弱有效解.

Reference (10)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return