Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2023 Volume 48 Issue 7
Article Contents

WANG Jingxuan. Existence of Positive Solutions for a Class of Nonlinear Second-Order Semi-Positive Periodic Problems[J]. Journal of Southwest China Normal University(Natural Science Edition), 2023, 48(7): 39-45. doi: 10.13718/j.cnki.xsxb.2023.07.006
Citation: WANG Jingxuan. Existence of Positive Solutions for a Class of Nonlinear Second-Order Semi-Positive Periodic Problems[J]. Journal of Southwest China Normal University(Natural Science Edition), 2023, 48(7): 39-45. doi: 10.13718/j.cnki.xsxb.2023.07.006

Existence of Positive Solutions for a Class of Nonlinear Second-Order Semi-Positive Periodic Problems

More Information
  • Received Date: 12/01/2023
    Available Online: 20/07/2023
  • MSC: O175.8; O175.14

  • \lt p \gt In this paper, we investigate the existence of positive solutions of the nonlinear second-order semi-positive periodic problems \lt /p \gt \lt p \gt $\left\{\begin{array}{l}-u^{\prime \prime}(t)+a(t) u(t)=\lambda g(t)(f(u)+\omega(t)) \quad t \in(0, 1) \\u(0)=u(1) \\u^{\prime}(0)=u^{\prime}(1)\end{array}\right. $ \lt /p \gt \lt p \gt where \lt italic \gt λ \lt /italic \gt is a positive parameter, \lt italic \gt a \lt /italic \gt : [0, 1] [0, ∞) and \lt italic \gt g \lt /italic \gt : [0, 1] [0, ∞) are continuous functions, \lt italic \gt ω \lt /italic \gt is a continuous function defined on [0, 1] with | \lt italic \gt ω \lt /italic \gt ( \lt italic \gt t \lt /italic \gt )|≤ \lt italic \gt k \lt /italic \gt , \lt italic \gt f \lt /italic \gt : [0, ∞) [0, ∞) is a continuous function and satisfies \lt inline-formula \gt $f_0=\lim\limits_{u \rightarrow 0} \frac{f(u)}{u}=0, f_{\infty}=\lim\limits_{u \rightarrow \infty} \frac{f(u)}{u}=\infty$ \lt /inline-formula \gt . By using the fixed point theorem in cones, we show that there exists a constant \lt italic \gt λ \lt /italic \gt \lt sub \gt * \lt /sub \gt \gt 0, such that the problem has at least one positive solution for \lt italic \gt λ \lt /italic \gt ∈(0, \lt italic \gt λ \lt /italic \gt \lt sub \gt * \lt /sub \gt ). \lt /p \gt
  • 加载中
  • [1] 李朝倩. 一类格林函数变号的二阶Neuman问题正解的存在性[J]. 西南师范大学学报(自然科学版), 2020, 45(12): 43-47.

    Google Scholar

    [2] 杨晓梅, 路艳琼. 一类变系数二阶离散Neumann边值问题正解的存在性[J]. 西南师范大学学报(自然科学版), 2020, 45(11): 18-26.

    Google Scholar

    [3] 祝岩. 一类带有变号权函数的二阶系统周期边值问题正解的存在性[J]. 西南师范大学学报(自然科学版), 2019, 44(8): 39-44.

    Google Scholar

    [4] 马满堂. 一类非线性二阶常微分方程周期问题正解的存在性[J]. 四川大学学报(自然科学版), 2018, 55(4): 693-697. doi: 10.3969/j.issn.0490-6756.2018.04.007

    CrossRef Google Scholar

    [5] GRAEF J R, KONG L J, WANG H Y. Existence, Multiplicity, and Dependence on a Parameter for a Periodic Boundary Value Problem[J]. Journal of Differential Equations, 2008, 245(5): 1185-1197. doi: 10.1016/j.jde.2008.06.012

    CrossRef Google Scholar

    [6] GRAEF J R, KONG L J, WANG H Y. A Periodic Boundary Value Problem with Vanishing Green's Function[J]. Applied Mathematics Letters, 2008, 21(2): 176-180. doi: 10.1016/j.aml.2007.02.019

    CrossRef Google Scholar

    [7] ATICI F M, GUSEINOV G S. On The Existence of Positive Solutions for Nonlinear Differential Equations with Periodic Boundary Conditions[J]. Journal of Computational and Applied Mathematics, 2001, 132(2): 341-356. doi: 10.1016/S0377-0427(00)00438-6

    CrossRef Google Scholar

    [8] XU J, MA R Y. Bifurcation from Interval and Positive Solutions for Second Order Periodic Boundary Value Oroblems[J]. Applied Mathematics and Computation, 2010, 216(8): 2463-2471. doi: 10.1016/j.amc.2010.03.092

    CrossRef Google Scholar

    [9] 马如云, 高承华. 二阶常微分方程周期解的全局分歧[J]. 数学物理学报, 2009, 29(5): 1223-1232.

    Google Scholar

    [10] MA R Y, XU J, HAN X L. Global Structure of Positive Solutions for Superlinear Second-Order Periodic Boundary Value Problems[J]. Applied Mathematics and Computation, 2012, 218(10): 5982-5988. doi: 10.1016/j.amc.2011.11.079

    CrossRef Google Scholar

    [11] MA R Y, GAO C H, CHEN R P. Existence of Positive Solutions of Nonlinear Second-Order Periodic Boundary Value Problems[J]. Boundary Value Problems, 2010, 2010(1): 1-18.

    Google Scholar

    [12] WANG H Y. On the Number of Positive Solutions of Nonlinear Systems[J]. Journal of Mathematical Analysis Applications, 2003, 281(1): 287-306.

    Google Scholar

    [13] ZHANG Z X, WANG J Y. On Existence and Multiplicity of Positive Solutions To Periodic Boundary Value Problems for Singular Nonlinear Second-Order Differential Equations[J]. Journal of Mathematical Analysis and Applications, 2003, 281(1): 99-107.

    Google Scholar

    [14] JIANG D Q, CHU J F, ZHANG M R. Multiplicity of Positive Periodic Solutions to Superlinear Repulsive Singular Equations[J]. Journal of Differential Equations, 2005, 211(2): 282-302.

    Google Scholar

    [15] DEIMLING K. Nonlinear Functional Analysis[M]. Berlin: Springer, 1985.

    Google Scholar

    [16] 郭大钧. 非线性泛函分析[M]. 3版. 北京: 高等教育出版社, 2015.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(409) PDF downloads(104) Cited by(0)

Access History

Other Articles By Authors

Existence of Positive Solutions for a Class of Nonlinear Second-Order Semi-Positive Periodic Problems

Abstract: \lt p \gt In this paper, we investigate the existence of positive solutions of the nonlinear second-order semi-positive periodic problems \lt /p \gt \lt p \gt $\left\{\begin{array}{l}-u^{\prime \prime}(t)+a(t) u(t)=\lambda g(t)(f(u)+\omega(t)) \quad t \in(0, 1) \\u(0)=u(1) \\u^{\prime}(0)=u^{\prime}(1)\end{array}\right. $ \lt /p \gt \lt p \gt where \lt italic \gt λ \lt /italic \gt is a positive parameter, \lt italic \gt a \lt /italic \gt : [0, 1] [0, ∞) and \lt italic \gt g \lt /italic \gt : [0, 1] [0, ∞) are continuous functions, \lt italic \gt ω \lt /italic \gt is a continuous function defined on [0, 1] with | \lt italic \gt ω \lt /italic \gt ( \lt italic \gt t \lt /italic \gt )|≤ \lt italic \gt k \lt /italic \gt , \lt italic \gt f \lt /italic \gt : [0, ∞) [0, ∞) is a continuous function and satisfies \lt inline-formula \gt $f_0=\lim\limits_{u \rightarrow 0} \frac{f(u)}{u}=0, f_{\infty}=\lim\limits_{u \rightarrow \infty} \frac{f(u)}{u}=\infty$ \lt /inline-formula \gt . By using the fixed point theorem in cones, we show that there exists a constant \lt italic \gt λ \lt /italic \gt \lt sub \gt * \lt /sub \gt \gt 0, such that the problem has at least one positive solution for \lt italic \gt λ \lt /italic \gt ∈(0, \lt italic \gt λ \lt /italic \gt \lt sub \gt * \lt /sub \gt ). \lt /p \gt

  • 近年来,二阶微分方程边值问题受到许多学者的关注[1-14]. 特别地,自然界中存在着大量的周期现象且这些周期现象可以通过二阶微分方程周期边值问题[3-14]来刻画. 比如文献[5]研究了二阶周期边值问题

    正解的存在性,其中a>0,λ是一个正参数,并且满足条件:

    (A1) f:[0,∞) [0,∞)是连续函数,且满足当u>0时,f(u)>0;

    (A2) g:[0,2π] [0,∞)是连续函数,且满足∫0g(t)dt>0.

    文献[5]运用锥上不动点定理,得到了:

    引理1[5]   假定条件(A1)-(A2)成立,且$f_{\infty}=\lim\limits_{u \rightarrow \infty} \frac{f(u)}{u}=\infty$,则存在λ0>0,使得当0 < λ < λ0时,问题(1)有一个正解.

    值得注意的是,文献[5]研究了非线性项f非负的情况下问题(1)正解的存在性,且a为常数. 受上述文献启发,本文考虑比问题(1)更广泛的问题. 具体地,本文研究二阶周期半正问题

    正解的存在性,其中λ是一个正参数. 我们得到如下结论:

    定理1   假定以下条件成立:

    (H1) f:[0,∞) [0,∞)是一个连续函数,且$f_0=\lim\limits_{u \rightarrow 0} \frac{f(u)}{u}=0, f_{\infty}=\lim\limits_{u \rightarrow \infty} \frac{f(u)}{u}=\infty$

    (H2) $g:[0, 1] \longrightarrow[0, \infty) \text { 是一个连续函数, 且满足 } \int_0^1 g(t) \mathrm{d} t>0$;

    (H3) a:[0, 1] [0,∞)是一个连续函数;

    (H4) ω是[0, 1]上的连续函数,且|ω(t)|≤k.

    则存在常数λ*>0,使得当0 < λ < λ*时,问题(2)至少存在一个正解uλ.

    注1   当ω=0时,定理1就退化为引理1的结果. 然而,我们所要研究的是允许|ω|≠0的情形,允许非线性项取负值的情况下正解的存在性结果. 因此,我们所得的结果是对引理1的推广.

1.   预备知识
  • 令空间E=C[0, 1],其在范数$\|u\|=\max\limits_{t \in[0, 1]}|u|$下构成Banach空间. 定义线性算子L$D(L) \subset E \longrightarrow E$

    其中

    引理2[15-16](锥拉伸与压缩不动点定理)   设E是一个Banach空间,且KE中的一个锥. 假设Ω1Ω2E的有界开子集,且有0∈Ω1$\overline{\varOmega_1} \subset \varOmega_2$. 令

    是全连续算子,且满足

    (ⅰ)‖Au‖≤‖u‖,uKΩ1且‖Au‖≥‖u‖,uKΩ2

    (ⅱ)‖Au‖≥‖u‖,uKΩ1且‖Au‖≤‖u‖,uKΩ2.

    AK∩(Ω2 \Ω1)中有一个不动点.

    定义u(x),v(x)是齐次方程

    满足初值条件

    的解. 且定义

    根据文献[6]中的定理2.5,下述引理成立:

    引理3  假设条件(H3)成立且h为非负连续函数,则线性问题

    存在唯一解

    其中

    $\text { 且 } G(t, s)>0, \forall t, s \in[0, 1] \text {. }$

    m>0,M>0.

    由于g(t)是[0, 1]上的连续函数,则g(t)在[0, 1]上有上界,记为T,即0 < g(t)≤T.

    引理4   令w

    的唯一解,则$w(t) \geqslant \frac{m}{M}\|w\|$.

      由引理3知

    从而$w(t) \geqslant \frac{m}{M}\|w\|$.

    引理5   令uC1[0, 1]∩C2(0,1),满足

    假设$\|u\|>\frac{M(m+M)}{m} k T$,则u≥0,且

       令v0(t)是微分方程

    的唯一解,则

    即-v0(t)≤MkT,则v0(t)≥-MkT.

    y(t)=u(t)-v0(t),则

    由引理4可知$y(t) \geqslant \frac{m}{M}\|y\|$,则有

2.   主要结果的证明
  • 定理1的证明   问题(2)的等价积分形式为

    定义E中的集合

    其中

    KE中的一个正锥.

    uK,结合引理5和(3)式可知

    因此$A(K) \subset K$. 此外,由Arzèla-Ascoli定理可得,$A: K \longrightarrow K$是全连续的.

    a>1,有

    因为$f_0=\lim\limits_{u \rightarrow 0} \frac{f(u)}{u}=0$,则对$\forall \eta>0$,存在H1>0,使得当a < uH1时,有f(u)≤ηu,且满足

    因此,如果uK且‖u‖=H1,则由(3),(4)式得

    则有

    $\text { 因为 } f_{\infty}=\lim\limits_{u \rightarrow \infty} \frac{f(u)}{u}=\infty \text {, 则 } \forall \mu>0 \text {, 存在 } \hat{H}_2>0 $$\text {, 使得当 } u \geqslant \hat{H}_2 \text { 时, 有 } \mu u \leqslant f(u)+\omega(t) \text {, 且满足}$

    则有uK且‖u‖=H2,则

    因此,由(6)式和(7)式得

    因此

    从而,由(5),(8)式和引理2可知,AK∩(Ω2\Ω1)中有一个不动点,使得H1≤‖u‖≤H2. 因此,当0 < λ < λ*时,问题(2)有一个正解uλ.

3.   应用
  • 例1   考虑问题

    解的存在性,其中λ>0.

       这里取

    对于问题(9)而言,显然f是连续的非负函数,且有

    f满足条件(H1). 又因g(t)=t连续,且$\int_0^1 g(t) \mathrm{d} t=\frac{1}{2}>0$,则条件(H2)成立. 因为a(t)=t+1为0,1上的非负函数,则条件(H3)成立. 因为ω(t)=sin 2πt,则|ω(t)|≤1,从而条件(H4)成立.

    根据定理1可得,存在常数λ*>0,使得当0 < λ < λ*时,问题(9)至少存在一个正解uλ.

Reference (16)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return