Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2022 Volume 1 Issue 1
Article Contents

WAN Xuanwu, TIAN Hui, ZHANG Wei, et al. Mechanism and Application of Induced Resistance in Plant[J]. PLANT HEALTH AND MEDICINE, 2022, (1): 18-25. doi: 10.13718/j.cnki.zwyx.2022.01.003
Citation: WAN Xuanwu, TIAN Hui, ZHANG Wei, et al. Mechanism and Application of Induced Resistance in Plant[J]. PLANT HEALTH AND MEDICINE, 2022, (1): 18-25. doi: 10.13718/j.cnki.zwyx.2022.01.003

Mechanism and Application of Induced Resistance in Plant

More Information
  • Received Date: 26/12/2021
  • MSC: S432.2

  • Resistance could be induced by exogenous proteins, carbohydrates and organic acids, including three processes of receptor recognition, signal transduction and defensive response. Based on the mechanism of plant-induced immunity, many kinds of plant immune inducers such as proteins, biocontrol bacteria and oligosaccharides were developed, which showed great application potential in improving disease resistance, stress resistance, yield and quality of crops. In this paper, the principles and types of plant immunity response, the three processes of plant immunity response and the types of immunity elicitors and immunity inducers were summarized. The plant immunity mechanism was systematically explained, and the problems and development trend of plant immunity inducers were further analyzed. This paper provided a scientific basis for the basic research, industrial development and field application of plant immunity inducers.
  • 加载中
  • [1] EULGEM T. Regulation of the Arabidopsis Defense Transcriptome[J]. Trends in Plant Science, 2005, 10(2):71-78.

    Google Scholar

    [2] TAMM L, THVRIG B, FLIESSBACH A, et al. Elicitors and Soil Management to Induce Resistance Against Fungal Plant Diseases[J]. NJAS-Wageningen Journal of Life Sciences, 2011, 58(3-4):131-137.

    Google Scholar

    [3] 刘艳潇,祝一鸣,周而勋.植物免疫诱抗剂的作用机理和应用研究进展[J].分子植物育种, 2020, 18(3):1020-1026.

    Google Scholar

    [4] KAKAR K U, NAWAZ Z, CUI Z, et al. Rhizosphere-Associated Alcaligenes and Bacillus Strains that Induce Resistance Against Blast and Sheath Blight Diseases, Enhance Plant Growth and Improve Mineral Content in Rice[J]. Journal of Applied Microbiology, 2017, 124(3):779-796.

    Google Scholar

    [5] WALTERS D R, FOUNTAINE J M. Practical Application of Induced Resistance to Plant Diseases:an Appraisal of Effectiveness under Field Conditions[J]. The Journal of Agricultural Science, 2009, 147(5):523-535.

    Google Scholar

    [6] ZIPFEL C. Plant Pattern-Recognition Receptors[J]. Trends in Immunology, 2014, 35(7):345-351.

    Google Scholar

    [7] GÓMEZ-GÓMEZ L, BOLLER T. FLS2:an LRR Receptor-Like Kinase Involved in the Perception of the Bacterial Elicitor Flagellin in Arabidopsis[J]. Molecular Cell, 2000, 5(6):1003-1011.

    Google Scholar

    [8] WANG S Z, SUN Z, WANG H Q, et al. Rice OsFLS2-Mediated Perception of Bacterial Flagellins is Evaded by Xanthomonas Oryzae PVS Oryzae and Oryzicola[J]. Molecular Plant, 2015, 8(7):1024-1037.

    Google Scholar

    [9] CAO Y R, LIANG Y, TANAKA K, et al. The Kinase LYK5 is a Major Chitin Receptor in Arabidopsis and Forms a Chitin-Induced Complex with Related Kinase CERK1[J]. eLife, 2014, 3:e03766.

    Google Scholar

    [10] SHIMIZU T, NAKANO T, TAKAMIZAWA D, et al. Two LysM Receptor Molecules, CEBiP and OsCERK1, Cooperatively Regulate Chitin Elicitor Signaling in Rice[J]. The Plant Journal:for Cell and Molecular Biology, 2010, 64(2):204-214.

    Google Scholar

    [11] 吴玉俊,吴旺泽.植物模式识别受体与先天免疫[J].植物生理学报, 2021, 57(2):301-312.

    Google Scholar

    [12] RAAYMAKERS T M, VAN DEN ACKERVEKEN G. Extracellular Recognition of Oomycetes during Biotrophic Infection of Plants[J]. Frontiers in Plant Science, 2016, 7:906.

    Google Scholar

    [13] 徐丽萍,李恒,娄永根.植物-植食性昆虫互作关系中早期信号事件研究进展[J].植物保护学报, 2018, 45(5):928-936.

    Google Scholar

    [14] WANG R, DENG D N, SHAO N Y, et al. Evodiamine Activates Cellular Apoptosis through Suppressing PI3K/AKT and Activating MAPK in Glioma[J]. OncoTargets and Therapy, 2018, 11:1183-1192.

    Google Scholar

    [15] PARK J, CHOI H J, LEE S, et al. Rac-Related GTP-Binding Protein in Elicitor-Induced Reactive Oxygen Generation by Suspension-Cultured Soybean Cells[J]. Plant Physiology, 2000, 124(2):725-732.

    Google Scholar

    [16] LUO Honglin, REIDY M A. Activation of Big Mitogen-Activated Protein Kinase-1 Regulates Smooth Muscle Cell Replication[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22(3):394-399.

    Google Scholar

    [17] TAMAOKI M, FREEMAN J L, MARQUōS L, et al. New Insights into the Roles of Ethylene and Jasmonic Acid in the Acquisition of Selenium Resistance in Plants[J]. Plant Signaling&Behavior, 2008, 3(10):865-867.

    Google Scholar

    [18] 张肖晗,赵芊,谢晨星,等.参与植物天然免疫的LRR型蛋白[J].基因组学与应用生物学, 2016, 35(9):2513-2518.

    Google Scholar

    [19] VAN BREUSEGEM F, BAILEY-SERRES J, MITTLER R. Unraveling the Tapestry of Networks Involving Reactive Oxygen Species in Plants[J]. Plant Physiology, 2008, 147(3):978-984.

    Google Scholar

    [20] GILL S S, TUTEJA N. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants[J]. Plant Physiology and Biochemistry, 2010, 48(12):909-930.

    Google Scholar

    [21] SAMI F, FAIZAN M, FARAZ A, et al. Nitric Oxide-Mediated Integrative Alterations in Plant Metabolism to Confer Abiotic Stress Tolerance, NO Crosstalk with Phytohormones and NO-Mediated Post Translational Modifications in Modulating Diverse Plant Stress[J]. Nitric Oxide, 2018, 73:22-38.

    Google Scholar

    [22] MAURA D, HAZAN R, KITAO T, et al. Evidence for Direct Control of Virulence and Defense Gene Circuits by the Pseudomonas aeruginosa Quorum Sensing Regulator, MVFR[J]. Scientific Reports, 2016, 6:34-43.

    Google Scholar

    [23] 邱德文.植物免疫诱抗剂的研究进展与应用前景[J].中国农业科技导报, 2014, 16(1):39-45.

    Google Scholar

    [24] 汪和贵,孙晓棠,郑兴汶,等.生物源蛋白激发子的研究进展[J].广西植物, 2016, 36(4):413-418.

    Google Scholar

    [25] 曹健.生防菌及生物诱抗分子在植物免疫激活及枯萎病防治方面的效应及机理研究[D].济南:齐鲁工业大学, 2019.

    Google Scholar

    [26] 陈爽,王继华,张必弦,等.贝莱斯芽孢杆菌对大豆根腐病盆栽防效及防御酶活性检测[J].分子植物育种.(2021-04-01)[2022-03-14].https://kns.cnki.net/kcms/detail/46.1068.S.20210401.1337.010.html.

    Google Scholar

    [27] 周荣金,秦健,杨茂英,等.巨大芽孢杆菌B196菌株分泌的Iturin A2对水稻纹枯病的防治作用[J].广东农业科学, 2014, 41(4):96-99.

    Google Scholar

    [28] 陈刘军,俞仪阳,王超,等.蜡质芽孢杆菌AR156防治水稻纹枯病机理初探[J].中国生物防治学报, 2014, 30(1):107-112.

    Google Scholar

    [29] 陈秦,薛泉宏,申光辉,等.放线菌对棉花幼苗生长及抗旱能力的影响[J].西北农业学报, 2010, 19(8):84-89.

    Google Scholar

    [30] 梁军锋,薛泉宏,牛小磊,等. 7株放线菌在辣椒根部定殖及对辣椒叶片PAL与PPO活性的影响[J].西北植物学报, 2005, 25(10):2118-2123.

    Google Scholar

    [31] 杨波,王源超.植物免疫诱抗剂的应用研究进展[J].中国植保导刊, 2019, 39(2):24-32.

    Google Scholar

    [32] 董玉妹,张美倩,沈慧,等.植食性昆虫唾液效应子和激发子的研究进展[J].昆虫学报, 2021, 64(8):982-997.

    Google Scholar

    [33] PEARCE G, YAMAGUCHI Y, BARONA G, et al. A Subtilisin-Like Protein from Soybean Contains an Embedded, Cryptic Signal that Activates Defense-Related Genes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(33):14921-14925.

    Google Scholar

    [34] 陈霁晖.氨基寡糖素诱导猕猴桃抗溃疡病的效果及机理研究[D].陕西:西北农林科技大学, 2021.

    Google Scholar

    [35] 马青,孙辉,杜昱光,等.氨基寡糖素对黄瓜白粉病菌侵染的抑制作用[J].菌物学报, 2004, 23(3):423-428.

    Google Scholar

    [36] REIGNAULT P H, COGAN A, MUCHEMBLED J, et al. Trehalose Induces Resistance to Powdery Mildew in Wheat[J]. The New Phytologist, 2001, 149(3):519-529.

    Google Scholar

    [37] COHEN Y. Local and Systemic Protection Against Phytophthora infestans Induced in Potato and Tomato Plants by Jasmonic Acid and Jasmonic Methyl Ester[J]. Phytopathology, 1993, 83(10):1054.

    Google Scholar

    [38] VERNOOIJ B, FRIEDRICH L, MORSE A, et al. Salicylic Acid is not the Translocated Signal Responsible for Inducing Systemic Acquired Resistance but is Required in Signal Transduction[J]. The Plant Cell, 1994, 6(7):959-965.

    Google Scholar

    [39] 苏岳峰,郑其向,马晓,等.茉莉酸和水杨酸诱导胡椒抗瘟病中生理生化的变化研究[J].西南农业学报, 2021, 34(8):1630-1636.

    Google Scholar

    [40] 马关雪.氮元素、外源水杨酸、茉莉酸甲酯对R2R3MYB基因及灯盏花黄酮代谢途径相关基因表达的影响[D].昆明:云南师范大学, 2021.

    Google Scholar

    [41] 孙光忠,彭超美,刘元明,等.氨基寡糖素对番茄晚疫病的防治效果研究[J].农药科学与管理, 2014, 35(12):60-62.

    Google Scholar

    [42] 宋林芳,双建林,李嘉伦,等. 2%氨基寡糖素水剂防治番茄病毒病田间药效试验[J].农业技术与装备, 2020(9):145-146, 148.

    Google Scholar

    [43] 周林媛,林云红,熊茜,等.氨基寡糖素与镁锌混配对烟草TMV的防控效果及生理分析[J].湖南农业科学, 2018(5):68-70, 73.

    Google Scholar

    [44] 陆健生. 0.5%氨基寡糖素水剂防治棉花苗期枯萎病试验初报[J].中国棉花, 2009, 36(2):24-25.

    Google Scholar

    [45] 姚满昌,张明志,丁琴翠,等.氨基寡糖素对西瓜枯萎病的防治试验[J].长江蔬菜, 2009(8):71-72.

    Google Scholar

    [46] 赵美键.氨基寡糖素对马铃薯黑痣病防治效果研究[D].秦皇岛:河北科技师范学院, 2019.

    Google Scholar

    [47] 漆艳香,谢艺贤,丁兆建,等.不同浓度诱抗剂诱导香蕉抗褐缘灰斑病的田间效果[J].中国南方果树, 2019, 48(5):61-64.

    Google Scholar

    [48] 贺春娟,薛敏云.氨基寡糖素对桃细菌性穿孔病的防治效果及增产作用研究[J].农药科学与管理, 2014, 35(10):60-62.

    Google Scholar

    [49] 陈利民,吴倩倩,何天骏,等.寡糖·链蛋白浸种对菜豆根腐病的防控效果[J].浙江农业科学, 2021, 62(10):2030-2033, 2043.

    Google Scholar

    [50] 徐传涛,王李芳,赵锦超,等. 6%寡糖·链蛋白可湿性粉剂对烟草病毒病的防治效果[J].安徽农业科学, 2016, 44(31):100-101.

    Google Scholar

    [51] 王淑霞,王付彬,马井玉,等.寡糖·链蛋白等5种药剂对辣椒病毒病的防治效果[J].浙江农业科学, 2020, 61(3):463-464.

    Google Scholar

    [52] 徐润东,盛世英,杨秀芬,等.寡糖·链蛋白对小麦抗黄花叶病毒的免疫诱抗作用[J].中国农业科学, 2016, 49(18):3561-3568.

    Google Scholar

    [53] 李培玲.寡糖·链蛋白防控马铃薯晚疫病效果评价[D].兰州:甘肃农业大学, 2018.

    Google Scholar

    [54] 刘见平,唐涛,赵明平.寡糖·链蛋白对南方水稻黑条矮缩病的防治效果及其对水稻的促长增产作用[J].农药, 2015, 54(8):606-609.

    Google Scholar

    [55] 王会福,王永才,余山红. 6%寡糖·链蛋白WP浸种处理对早稻恶苗病的预防效果及应用技术[J].农业灾害研究, 2020, 10(4):15-16.

    Google Scholar

    [56] 李玲,刘宝军,杨凯,等.木霉菌对小麦白粉病的田间防效研究[J].山东农业科学, 2021, 53(7):96-100.

    Google Scholar

    [57] 刘利佳,徐志强,何佳,等.哈茨木霉菌诱导烟草抗黑胫病代谢差异的研究[J].中国农业科技导报, 2021, 23(8):91-105.

    Google Scholar

    [58] 杨万荣,邢丹,蓬桂华,等.木霉菌生物防治辣椒疫病的研究进展[J].现代农业科技, 2015(19):127-129.

    Google Scholar

    [59] 刘明鑫.木霉菌对黄瓜促生作用与立枯病防效的研究[D].大庆:黑龙江八一农垦大学, 2018.

    Google Scholar

    [60] 朱华珺,周瑚,任佐华,等.枯草芽孢杆菌JN005胞外抗菌物质及对水稻叶瘟防治效果[J].中国水稻科学, 2020, 34(5):470-478.

    Google Scholar

    [61] 余传金.哈茨木霉菌PAF-AH-like和hyd1基因系统诱导玉米抗弯孢叶斑病机理研究[D].上海:上海交通大学, 2016.

    Google Scholar

    [62] 张元珍,冯晓菲,吴磊,等.稻瘟酰胺与氨基寡糖素配施对水稻防病和增产的效果[J].湖南农业科学, 2020(9):52-54, 57.

    Google Scholar

    [63] 李莹莹.免疫诱抗剂对茶树抗寒性的影响及机制研究[D].贵阳:贵州大学, 2020.

    Google Scholar

    [64] 陈德清,王亮,王娜,等.氨基寡糖素浸种对小麦生长发育的影响[J].黑龙江农业科学, 2018(8):11-14.

    Google Scholar

    [65] 田卉,罗怀海,万宣伍,等. 5%氨基寡糖素对茶树抗逆增产效果评估[J].四川农业科技, 2020(8):16-17, 20.

    Google Scholar

    [66] 康启中,刘观清. 6%寡糖·链蛋白在水稻上应用效果初探[J].安徽农学通报, 2019, 25(1):78-79.

    Google Scholar

    [67] 杨莉,冯宏祖,师建银,等.几丁聚糖对枣黑斑病的防效及果实品质的影响[J].塔里木大学学报, 2018, 30(3):9-14.

    Google Scholar

    [68] 靳亚忠,熊亚男,孙雪,等.化肥减施与木霉菌有机肥配施对辣椒产量、品质及根际土壤酶活性的影响[J].四川农业大学学报, 2021, 39(2):198-204.

    Google Scholar

    [69] 廖建松,周路,张承琴. 2种生物农药对烟草病毒病防治效果对比试验[J].现代农业科技, 2015(23):133, 139.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1477) PDF downloads(4458) Cited by(0)

Access History

Mechanism and Application of Induced Resistance in Plant

Abstract: Resistance could be induced by exogenous proteins, carbohydrates and organic acids, including three processes of receptor recognition, signal transduction and defensive response. Based on the mechanism of plant-induced immunity, many kinds of plant immune inducers such as proteins, biocontrol bacteria and oligosaccharides were developed, which showed great application potential in improving disease resistance, stress resistance, yield and quality of crops. In this paper, the principles and types of plant immunity response, the three processes of plant immunity response and the types of immunity elicitors and immunity inducers were summarized. The plant immunity mechanism was systematically explained, and the problems and development trend of plant immunity inducers were further analyzed. This paper provided a scientific basis for the basic research, industrial development and field application of plant immunity inducers.

Reference (69)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return