Message Board

Dear readers, authors and reviewers,you can add a message on this page. We will reply to you as soon as possible!

2024 Volume 3 Issue 3
Article Contents

GAO Han, ZHANG Lihe, LIU Wenshan, et al. Current Research and Application Status of Agricultural Pest Control in Rwanda[J]. PLANT HEALTH AND MEDICINE, 2024, 3(3): 10-17. doi: 10.13718/j.cnki.zwyx.2024.03.002
Citation: GAO Han, ZHANG Lihe, LIU Wenshan, et al. Current Research and Application Status of Agricultural Pest Control in Rwanda[J]. PLANT HEALTH AND MEDICINE, 2024, 3(3): 10-17. doi: 10.13718/j.cnki.zwyx.2024.03.002

Current Research and Application Status of Agricultural Pest Control in Rwanda

More Information
  • Corresponding author: QIU Baoli
  • Received Date: 12/04/2024
    Available Online: 25/06/2024
  • MSC: S435

  • Rwanda is in east-central Africa with agriculture as the main economic pillar. Its main economic crops include cassava, tomatoes, maize, bananas, peppers, citrus and rice. Crops are subjected to the continuous damage of pests and diseases in the production process, which can lead to heavy losses for farmers and even result in no harvest. This paper reviewed the research and application progress on the occurrence and management of major crop pests and diseases in Rwanda, and analyzed the countermeasures for the sustainable development of agriculture and pest management in Rwanda, aiming to provide valuable reference for the future research on the management of agricultural diseases and pests in Rwanda in the future, with a view to realizing the stability and sustainable development of agriculture in Rwanda under China's aid to Africa policy.

  • 加载中
  • [1] NAHAYO A. 卢旺达农民参与水土保持、农业集约化以及应对气候变化等农业发展计划的驱动因素分析评估[D]. 南京: 南京农业大学, 2016.

    Google Scholar

    [2] STAINBACK G A, MASOZERA M, MUKURALINDA A, et al. Smallholder Agroforestry in Rwanda: a SWOT-AHP Analysis[J]. Small-scale Forestry, 2012, 11(3): 285-300. doi: 10.1007/s11842-011-9184-9

    CrossRef Google Scholar

    [3] NIGHT G, ASⅡMWE P, GASHAKA G, et al. Occurrence and Distribution of Cassava Pests and Diseases in Rwanda[J]. Agriculture, Ecosystems & Environment, 2011, 140(3-4): 492-497.

    Google Scholar

    [4] D. H. BYRNE, 陈俊学. 木薯螨类及其防治[J]. 热带作物译丛, 1986(1): 64-66.

    Google Scholar

    [5] 段春芳, 宋记明, 沈绍斌, 等. 烟粉虱成虫在不同木薯品种上的空间分布型研究[J]. 热带作物学报, 2015, 36(8): 1456-1461.

    Google Scholar

    [6] NYIRAKANANI C, BIZIMANA J P, KWIBUKA Y, et al. Farmer and Field Survey in Cassava-Growing Districts of Rwanda Reveals Key Factors Associated with Cassava Brown Streak Disease Incidence and Cassava Productivity[J]. Frontiers in Sustainable Food Systems, 2021, 5: 699655. doi: 10.3389/fsufs.2021.699655

    CrossRef Google Scholar

    [7] KWIBUKA Y, NYIRAKANANI C, BIZIMANA J P, et al. Risk Factors Associated with Cassava Brown Streak Disease Dissemination through Seed Pathways in Eastern D. R. Congo[J]. Frontiers in Plant Science, 2022, 13: 803980.

    Google Scholar

    [8] NDEREYIMANA A, NYALALA S, MURERWA P, et al. Pathogenicity of some Commercial Formulations of Entomopathogenic Fungi on the Tomato Leaf Miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)[J]. Egyptian Journal of Biological Pest Control, 2019, 29(1): 70. doi: 10.1186/s41938-019-0184-y

    CrossRef Google Scholar

    [9] WANGH, XIANX Q, GUY J, et al. Similar Bacterial Communities among Different Populations of a Newly Emerging Invasive Species, Tuta absoluta (Meyrick)[J]. Insects, 2022, 13(3): 252. doi: 10.3390/insects13030252

    CrossRef Google Scholar

    [10] TOEPFER S, FALLET P, KAJUGA J, et al. Streamlining Leaf Damage Rating Scales for the Fall Armyworm on Maize[J]. Journal of Pest Science, 2021, 94(4): 1075-1089. doi: 10.1007/s10340-021-01359-2

    CrossRef Google Scholar

    [11] SILVESTRI S, MACHARIA M, UZAYISENGA B. Analysing the Potential of Plant Clinics to Boost Crop Protection in Rwanda through Adoption of IPM: The Case of Maize and Maize Stem Borers[J]. Food Security, 2019, 11(2): 301-315. doi: 10.1007/s12571-019-00910-5

    CrossRef Google Scholar

    [12] TAMBOJ A, KANSⅡMEM K, MUGAMBⅡ, et al. Understanding Smallholders' Responses to Fall Armyworm (Spodoptera frugiperda) Invasion: Evidence from Five African Countries[J]. The Science of the Total Environment, 2020, 740: 140015. doi: 10.1016/j.scitotenv.2020.140015

    CrossRef Google Scholar

    [13] OTIMM H, ALIBUS, ASEAG, et al. Performance of Bt Maize Event MON810 in Controlling Maize Stem Borers Chilo partellus and Busseola fusca in Uganda[J]. Crop Protection, 2022, 156: 105945. doi: 10.1016/j.cropro.2022.105945

    CrossRef Google Scholar

    [14] OKONYA J, OCIMATI W, NDUWAYEZU A, et al. Farmer Reported Pest and Disease Impacts on Root, Tuber, and Banana Crops and Livelihoods in Rwanda and Burundi[J]. Sustainability, 2019, 11(6): 1592. doi: 10.3390/su11061592

    CrossRef Google Scholar

    [15] OKONYA J S, PETSAKOS A, SUAREZ V, et al. Pesticide Use Practices in Root, Tuber, and Banana Crops by Smallholder Farmers in Rwanda and Burundi[J]. International Journal of Environmental Research and Public Health, 2019, 16(3): 400. doi: 10.3390/ijerph16030400

    CrossRef Google Scholar

    [16] WAWERU B W, RUKUNDOP, KILALODC, et al. Effect of Border Crops and Intercropping on Aphid Infestation and the Associated Viral Diseases in Hot Pepper (Capsicum Sp.)[J]. Crop Protection, 2021, 145: 105623. doi: 10.1016/j.cropro.2021.105623

    CrossRef Google Scholar

    [17] ZOHOUNGBOGBO H P F, ACHIGAN-DAKOEG, HONFOGAJ, et al. Incidence and Severity of Aphid-Transmitted Viruses and Horticultural Performance of Habanero Pepper (Capsicum chinense Jacq.) Breeding Lines in Benin[J]. HortScience, 2022, 57(5): 606-612. doi: 10.21273/HORTSCI16535-22

    CrossRef Google Scholar

    [18] ABUOMONGO C, OPIOSM, BAYIYANAI, et al. African Cassava Whitefly and Viral Disease Management through Timed Application of Imidacloprid[J]. Crop Protection, 2022, 158: 106015. doi: 10.1016/j.cropro.2022.106015

    CrossRef Google Scholar

    [19] PARRY H, KALYEBI A, BIANCHI F, et al. Evaluation of Cultural Control and Resistance-Breeding Strategies for Suppression of Whitefly Infestation of Cassava at the Landscape Scale: a Simulation Modeling Approach[J]. Pest Management Science, 2020, 76(8): 2699-2710. doi: 10.1002/ps.5816

    CrossRef Google Scholar

    [20] MUNGANYINKA E, MARGARIA P, SHEAT S, et al. Localization of Cassava Brown Streak Virus in Nicotiana rustica and Cassava Manihot esculenta (Crantz) Using RNAscope® in Situ Hybridization[J]. Virology Journal, 2018, 15(1): 128. doi: 10.1186/s12985-018-1038-z

    CrossRef Google Scholar

    [21] NANYITI S, KABAALU R, ALICAI T, et al. Detection of Cassava Brown Streak Ipomoviruses in Aphids Collected from Cassava Plants[J]. Frontiers in Sustainable Food Systems, 2023, 7: 1027842. doi: 10.3389/fsufs.2023.1027842

    CrossRef Google Scholar

    [22] GOMEZ M A, LIN Z D, MOLL T, et al. Simultaneous CRISPR/Cas9-Mediated Editing of Cassava eIF4E Isoforms NCBP-1 and NCBP-2 Reduces Cassava Brown Streak Disease Symptom Severity and Incidence[J]. Plant Biotechnology Journal, 2019, 17(2): 421-434. doi: 10.1111/pbi.12987

    CrossRef Google Scholar

    [23] NDEREYIMANA A, NYALALA S, MURERWA P, et al. Potential of Entomopathogenic Nematode Isolates from Rwanda to Control the Tomato Leaf Miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)[J]. Egyptian Journal of Biological Pest Control, 2019, 29(1): 57. doi: 10.1186/s41938-019-0163-3

    CrossRef Google Scholar

    [24] MULUGETA T, MUHINYUZA J B, GOUWS-MEYER R, et al. Botanicals and Plant Strengtheners for Potato and Tomato Cultivation in Africa[J]. Journal of Integrative Agriculture, 2020, 19(2): 406-427. doi: 10.1016/S2095-3119(19)62703-6

    CrossRef Google Scholar

    [25] NDEREYIMANA A, NYALALA S, MURERWA P, et al. Field Efficacy of Entomopathogens and Plant Extracts on Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) Infesting Tomato in Rwanda[J]. Crop Protection, 2020, 134: 105183. doi: 10.1016/j.cropro.2020.105183

    CrossRef Google Scholar

    [26] KONAN K A J, JAWORSKI C C, MONTICELLI L S, et al. Combined Use of Zoophytophagous Mirids for Sustainable Biological Protection of Greenhouse Tomato Crops[J]. CABI Agriculture and Bioscience, 2023, 4(1): 28. doi: 10.1186/s43170-023-00170-6

    CrossRef Google Scholar

    [27] CANDÁS L, CAGNOTTI C L, LÓPEZ S N. Integration of Inherited Sterility and Inoculative Releases of a Miridae Predator for the Control of the Tomato Leaf Miner, Tuta absoluta[J]. BioControl, 2024, 69(1): 29-37. doi: 10.1007/s10526-023-10239-w

    CrossRef Google Scholar

    [28] FALLET P, BAZAGWIRAD, GUENATJM, et al. Laboratory and Field Trials Reveal the Potential of a Gel Formulation of Entomopathogenic Nematodes for the Biological Control of Fall Armyworm Caterpillars (Spodoptera frugiperda)[J]. Biological Control, 2022, 176: 105086. doi: 10.1016/j.biocontrol.2022.105086

    CrossRef Google Scholar

    [29] FALLET P, DE GIANNI L, MACHADO R A R, et al. Comparative Screening of Mexican, Rwandan and Commercial Entomopathogenic Nematodes to be Used Against Invasive Fall Armyworm, Spodoptera frugiperda[J]. Insects, 2022, 13(2): 205. doi: 10.3390/insects13020205

    CrossRef Google Scholar

    [30] SELLAPPAN R, THANGAVELK, UTHANDIS. Bioprotective Potential of Maize Apoplastic Fluid Bacterium (Bacillus amyloliquefaciens) and Arbuscular Mycorrhizal Fungi (Glomus intraradices) Against Spodoptera frugiperda Infestation in Maize[J]. Physiological and Molecular Plant Pathology, 2023, 127: 102050. doi: 10.1016/j.pmpp.2023.102050

    CrossRef Google Scholar

    [31] DASSOU A G, LOKO Y L E, TOFFA J, et al. Within-field Crop Diversity and Landscape Complexity Decrease the Abundance of Fall Armyworm Larvae in Maize Cropping Systems[J]. Biological Control, 2023, 183: 105260. doi: 10.1016/j.biocontrol.2023.105260

    CrossRef Google Scholar

    [32] BLOMME G, DUSINGIZIMANA P, NTAMWIRA J, et al. Comparing Effectiveness, Cost- and Time-Efficiency of Control Options for Xanthomonas Wilt of Banana under Rwandan Agro-Ecological Conditions[J]. European Journal of Plant Pathology, 2021, 160(2): 487-501. doi: 10.1007/s10658-021-02258-z

    CrossRef Google Scholar

    [33] TRIPATHI L, ATKINSONH, RODERICKH, et al. Genetically Engineered Bananas Resistant to Xanthomonas Wilt Disease and Nematodes[J]. Food and Energy Security, 2017, 6(2): 37-47. doi: 10.1002/fes3.101

    CrossRef Google Scholar

    [34] TRIPATHI L, NTUI V O, TRIPATHI J N. Control of Bacterial Diseases of Banana Using CRISPR/Cas-Based Gene Editing[J]. International Journal of Molecular Sciences, 2022, 23(7): 3619. doi: 10.3390/ijms23073619

    CrossRef Google Scholar

    [35] WAWERU B W, MIANO D W, KILALO D C, et al. Detection and Distribution of Viruses Infecting Hot Pepper (Capsicum spp.) in Rwanda[J]. Journal of Plant Pathology, 2021, 103(2): 573-585. doi: 10.1007/s42161-021-00811-7

    CrossRef Google Scholar

    [36] WILBERTS L, VAN HEE S, STOCKMANS I, et al. Combining Root Inoculation with Akanthomyces muscarius (Hypocreales: Cordycipitaceae) and the Parasitoid Aphidius ervi (Haliday) (Hymenoptera: Braconidae) to Control Aphids on Sweet Pepper[J]. BioControl, 2023, 68(6): 579-589. doi: 10.1007/s10526-023-10219-0

    CrossRef Google Scholar

    [37] MUTANDWA E, KANYARUKIGAR. Understanding the Role of Forests in Rural Household Economies: Experiences from the Northern and Western Provinces of Rwanda[J]. Southern Forests: A Journal of Forest Science, 2016, 78(2): 115-122. doi: 10.2989/20702620.2015.1136502

    CrossRef Google Scholar

    [38] BOOTH D, GOLOOBA-MUTEBI F. Policy for Agriculture and Horticulture in Rwanda: A Different Political Economy?[J]. Development Policy Review, 2014, 32(2): s173-s196.

    Google Scholar

    [39] AYILARA M S, ADELEKE B S, AKINOLA S A, et al. Biopesticides as a Promising Alternative to Synthetic Pesticides: A Case for Microbial Pesticides, Phytopesticides, and Nanobiopesticides[J]. Frontiers in Microbiology, 2023, 14: 1040901. doi: 10.3389/fmicb.2023.1040901

    CrossRef Google Scholar

    [40] HATEGEKIMANA A, ERLER F. Fecundity and Fertility Inhibition Effects of some Plant Essential Oils and Their Major Components Against Acanthoscelides obtectus Say (Coleoptera: Bruchidae)[J]. Journal of Plant Diseases and Protection, 2020, 127(5): 615-623. doi: 10.1007/s41348-020-00311-3

    CrossRef Google Scholar

    [41] NTEZIYAREMYE P, CHERUTOI J, MAKATIANI J, et al. Insecticidal Potential of Essential Oils from Cupressus lusitanica Growing in Ecological Zones of Rwanda Against Adult Housefly, Musca domestica L[J]. International Journal of Tropical Insect Science, 2023, 43(3): 895-907. doi: 10.1007/s42690-023-00972-1

    CrossRef Google Scholar

    [42] MACHADO RAR, BHAT AH, ABOLAFIA J, et al. Steinernema Africanumn. sp. (Rhabditida, Steinernematidae), a new entomopathogenic nematode species isolated in the republic of Rwanda[J]. Journal of Nematology, 2022, 54(1): 20220049. doi: 10.2478/jofnem-2022-0049

    CrossRef Google Scholar

    [43] YAN X, WAWERU B, QIU X H, et al. New Entomopathogenic Nematodes from Semi-Natural and Small-Holder Farming Habitats of Rwanda[J]. Biocontrol Science and Technology, 2016, 26(6): 820-834. doi: 10.1080/09583157.2016.1159658

    CrossRef Google Scholar

    [44] KAJUGA J, HATEGEKIMANA A, YAN X, et al. Management of White Grubs (Coleoptera: Scarabeidae) with Entomopathogenic Nematodes in Rwanda[J]. Egyptian Journal of Biological Pest Control, 2018, 28(1): 2. doi: 10.1186/s41938-017-0003-2

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(1)

Article Metrics

Article views(1436) PDF downloads(442) Cited by(0)

Access History

Current Research and Application Status of Agricultural Pest Control in Rwanda

    Corresponding author: QIU Baoli

Abstract: 

Rwanda is in east-central Africa with agriculture as the main economic pillar. Its main economic crops include cassava, tomatoes, maize, bananas, peppers, citrus and rice. Crops are subjected to the continuous damage of pests and diseases in the production process, which can lead to heavy losses for farmers and even result in no harvest. This paper reviewed the research and application progress on the occurrence and management of major crop pests and diseases in Rwanda, and analyzed the countermeasures for the sustainable development of agriculture and pest management in Rwanda, aiming to provide valuable reference for the future research on the management of agricultural diseases and pests in Rwanda in the future, with a view to realizing the stability and sustainable development of agriculture in Rwanda under China's aid to Africa policy.

  • 开放科学(资源服务)标志码(OSID):

1.   自然环境及农业地位
  • 卢旺达(Rwanda)位于非洲中东部的东非高原上,地处1°-3°S,29°-31°E,北距离赤道120.7 km,平均海拔1 600 m,属于内陆国家,东临坦桑尼亚,南接布隆迪,西接刚果(金),北连乌干达;西距离印度洋1 416.2 km,东距离大西洋2 011.7 km(均为直线距离),全境多山,有“千丘之国”之称[1].

    卢旺达大部分地区属于热带草原、热带高原气候. 气候温和,平均温度为20.50~21.25 ℃,8月和9月为最热的月份,白天最高气温34 ℃,夜晚最低温度15 ℃. 一年2个旱季、2个雨季. 12月至次年2月为小旱季,3月至5月为大雨季,6月至9月为大旱季,10月至12月为小雨季,年均降雨量1 200~1 600 mm. 年均降雨量从东向西逐步增加,全国降雨量最多的地区年降雨量也不超过2 000 mm[1].

    农业是卢旺达经济发展的支柱产业,也是卢旺达的根基,占据了国内生产总值的2/3,解决了85%以上的人口就业. 近年来,卢旺达政府大力支持农业发展,并推出一系列有利于农业发展的政策,以期为农民提供可持续收入,因此,农业在卢旺达也具有巨大发展潜力[2].

2.   农作物病虫害及危害特征
  • 卢旺达的主要农作物包括木薯、番茄、玉米、香蕉、辣椒、水稻、柑橘、咖啡、茶叶等. 目前,卢旺达木薯虫害以木薯螨类和烟粉虱为主[3]. 木薯螨类中木薯单爪螨(Mononychellus tanajoa Bonder)危害最为严重,口针刺吸植株冠部的芽、新叶和幼茎汁液,受害叶片有黄白色斑点、褪绿、畸形、变黑、干枯等表现,严重时整株死亡[4]. 烟粉虱(Bemisia tabaci Gennadius)以成虫和若虫刺吸植物汁液,受害叶片褪绿、变黄、萎蔫,甚至整株枯死,成虫、若虫分泌大量蜜露,污染叶片,极易诱发煤污病,同时还可传播多种植物病毒,也是木薯花叶病毒的主要传播者[5]. 木薯褐条纹病(Cassava Brown StreakDisease)也是卢旺达重要的毁灭性病毒病[6],易通过根茎传播,严重发生时可造成100%产量损失[7].

    番茄潜叶蛾(Tuta absoluta Meyrick)是卢旺达番茄产业的优势害虫[8],该虫主要以幼虫进行危害,幼虫潜入叶片、顶梢、腋芽、嫩茎及果实内进行取食,发生严重时会导致番茄减产80%~100%,是最具毁灭性的世界性入侵害虫之一[9].

    草地贪夜蛾(Spodoptera frugiperda Smith)和玉米茎螟(Pyrausta nubilalis Hubner)[10-11]是卢旺达玉米产业的最大虫害群体. 草地贪夜蛾迁飞性极强,成虫可传播数百千米,并且繁殖迅速,可导致玉米产量下降高达47%,对卢旺达玉米生产造成重大损失[12]. 玉米茎螟的幼虫以植物的轮茎和隧道茎为食,导致生长中的嫩芽死亡,同时,茎螟对玉米穗的损害会导致玉米在收获前受到其他贮藏害虫以及霉菌毒素(如黄曲霉毒素)的侵染,对卢旺达的玉米产业也造成了严重的损失[13].

    在香蕉产业中,香蕉细菌性枯萎病(Banana Bacterial Wilt Disease)[14-15]是卢旺达最常见的病害,侵染后可造成幼株受损,嫩叶萎蔫、倒塌[15]. 豆蚜(Cowpea Aphid)是影响卢旺达辣椒种植的重要害虫之一,该害虫刺吸植株汁液,同时,其排泄物会诱发霉污病,影响光合作用,其最为严重的危害方式是传播辣椒脉斑驳病毒(Pepper Veinal Mottle Virus,PVMV),该病毒可导致花叶变黄变形、植物发育迟缓等[16-17],给卢旺达辣椒产业造成了不可忽视的损失. 卢旺达主要农作物及其主要病虫害见表 1.

3.   病虫害的防治技术及其应用现状
  • 在卢旺达,当前对木薯单爪螨的防控主要采用“以螨治螨”的技术手段,如应用一种捕食性螨虫(Typhlodromalus aripo Deleon)防控木薯螨类[3],但对于烟粉虱的有效生物防控并没有更多的记录,主要采用杀虫剂吡虫啉[18]及种植抗性品种来控制[19]. 在木薯褐条纹病防控应用研究方面,Munganyinka等[20]开发了一种基于RNAscope技术的原位杂交测定法,来检测和定位木薯中的褐条纹病毒,这为研究木薯褐条纹病毒在木薯中感染和发展过程中的趋向性提供了技术支撑;进一步研究发现,木薯褐条纹病可以通过蚜虫进行传播[21]. 也有研究利用CRISPER/Cas9介导对木薯elF4E亚型的新型帽结合蛋白(nCBP-1)和nCBP-2进行基因编辑,发现可以降低木薯褐条纹病症状的严重程度[22]. 当前,卢旺达在木薯褐条纹病传播及其媒介害虫的防控方面尚未形成系统化的防控措施,主要依赖于杀虫剂来进行防控. 因此,对木薯褐条纹病的防控亟需进一步研究.

  • 番茄是卢旺达最主要的经济作物之一,不仅可以帮助减轻贫困,还在一定程度上解决了非洲食物短缺的问题[8]. 近年来,番茄潜叶蛾对番茄产业造成严重危害,在番茄潜叶蛾防控技术方面,Ndereyimana等[23]研究发现昆虫病原真菌(EPF)、昆虫病原线虫(EPN)制剂对番茄潜叶蛾幼虫都具有良好的致死效果,确定了2种病原微生物制剂都具有作为杀虫剂替代品的潜力;此外,利用植物源药剂和植物增强剂,不仅可以有效保护农作物,还能吸引相关害虫的天敌,维持相关天敌的多样性,进而保持生态系统的多样性[24]. 也有研究发现,印楝提取物对番茄潜叶蛾具有致死效果,可以有效减轻番茄潜叶蛾对番茄植株的危害[25]. 在卢旺达,针对番茄潜叶蛾的生物防治工作主要通过积极利用天敌昆虫的方式,如蜻蜓(Nesidiocoris tenuis Reuter)和杂食性椿象(Macrolophus pygmaeus Rambur)作为捕食性天敌,可以捕食番茄潜叶蛾的卵和幼虫,并减轻番茄作物中潜叶蛾的破坏性[26]. Candás等[27]利用盲蝽(Tupiocoris cucurbitaceus Spinola)来捕食番茄潜叶蛾的卵,同时,也在研究遗传不育技术(IS)在控制番茄潜叶蛾方面的潜力和效果.

  • 在卢旺达农村地区,玉米在农民的生计中发挥着重要作用,然而病虫害的发生导致玉米产量锐减[11]. 草地贪夜蛾这一源自美洲的害虫,已严重侵扰非洲地区,成为卢旺达地区玉米的头号威胁. 昆虫病原线虫(EPN)是控制草地贪夜蛾幼虫的一种具有广阔应用前景且可持续的防控方法[28],用羧甲基纤维素配制的低剂量EPN处理玉米植株,草地贪夜蛾幼虫死亡率达到100%,用水配置则可以减少70%以上的幼虫. Fallet等[29]对比了在卢旺达本土挖掘的EPN与市售商业化EPN对草地贪夜蛾的致死效果,结果显示这2种不同来源的EPN均对草地贪夜蛾有良好的致死效果,尤其是卢旺达本土的斯氏线虫(Steinernema carpocapsae Weiser)RW14-G-R3a-2品系,其针对2龄、3龄若虫的致死率可达100%,对6龄若虫的致死率为75%. 这一重要发现极大地推动了卢旺达基于EPN的本地生物防治产品的研发进程,为草地贪夜蛾的绿色、环保和可持续防控策略提供了有力支持.

    研究发现,解淀粉芽孢杆菌(Bacillus amyloliquefaciens Macedo)和丛枝菌根真菌(Glomus intraradices Trappe)具有保护玉米免受草地贪夜蛾取食的作用,这2种内共生菌均能显著提高玉米的防御能力,使其有效抵御草地贪夜蛾的侵害[30]. Dassou等[31]发现,通过提升田间作物的多样性和景观的复杂性,可有效减少草地贪夜蛾幼虫的种群数量. 目前,卢旺达地区主要依托昆虫病原线虫来防控草地贪夜蛾,同时,辅以共生菌等多元化手段. 然而,关于草地贪夜蛾天敌昆虫的研究与应用尚显不足,期待未来能加强此方面的研究与应用,以进一步丰富和完善防控策略.

    针对玉米茎螟的防控,主要措施包括种植抗性品种,间作玉米、木薯或其他非寄主植物,以及使用印楝粉(印楝素与干黏土或锯末混合)或手工摘除幼虫. 鸟类、蜘蛛、蚂蚁和寄生蜂等天敌能有效控制幼虫[11],也为卢旺达未来制定玉米茎螟的生物防控策略提供了方向.

  • 香蕉是卢旺达不可或缺的经济作物,种植香蕉是农民主要的增收途径,尤其在农村地区[14]. 然而,香蕉生产面临的一大挑战是病虫害的威胁,其中香蕉细菌性枯萎病尤为严重. 为减轻该病害带来的损失,当地普遍采用杀菌剂进行处理[15],或清除整个受害植株,后者不仅需要大量劳动力,成本也相对较高. 相比之下,单病茎去除技术精准切除了患病部位,保护了健康部分免受感染,是一种更为高效且成本较低的防控选择[32].

    研究表明,HrapPflp基因在调控香蕉对黄单胞杆菌的抗性中发挥着关键作用,通过农杆菌介导的转基因技术培育出的香蕉品种,对黄单胞杆菌的敏感性显著降低[33]. Tripathi等[34]利用CRISPR/Cas9介导的基因编辑技术,通过精准敲除易感基因,激活香蕉的防御机制,使其产生对细菌性枯萎病的抗性. 目前,卢旺达在香蕉细菌性枯萎病生物防治方面的研究尚显不足,未来应加大对生物防治技术的研发与应用力度,以更有效地应对这一病害.

  • 辣椒是卢旺达出口的关键蔬菜品种,主要销往欧洲市场,对卢旺达的经济增长贡献显著,并成为众多小农户的重要经济来源. 在卢旺达,豆蚜是危害辣椒的主要虫害,可传播辣椒脉斑驳病毒(PVMV)以及花叶病毒,导致果实花叶变黄、变形、植物发育迟缓等[16]. Waweru等[35]通过血清学检测、PCR及DNA测序技术,首次在卢旺达检测并报道了辣椒蚜虫传播PVMV病毒. Waweru等[16]发现,伴生种植策略(边界作物和间作方式)可有效减少蚜虫数量和病毒传播. Wilberts等[36]采取综合防控措施,在辣椒根部施用了昆虫病原真菌(Akanthomyces muscarius Ellis),并结合引入蚜虫寄生蜂——阿尔蚜茧蜂(Aphidius ervi Haliday),成功将虫口密度降低80%以上. 针对卢旺达辣椒病虫害的生物防治还有较大的研究空间,未来可深入探索并广泛应用辣椒病虫害的生物防治方法.

4.   展望
  • 农业是承载国家稳定和社会发展的基石,是农民家庭生计的重要保障[37]. 在联合国列为世界最不发达国家之一的卢旺达,农业对于这片土地上的民众而言,其重要性更是无需赘言. 农业的可持续发展在保证卢旺达经济稳定发展的同时,还对保障卢旺达的政治稳定有重要的意义[38]. 为实现农业的可持续发展,需减少对化学农药的依赖,采取更为生态友好的生物防治策略来应对病虫害,这不仅能提高食品的安全性和质量,降低病虫害对药物的耐受性,还有助于保护生态环境,延缓病虫害抗药性的产生,为卢旺达农业的长远发展奠定了坚实基础.

    利用生物防治手段进行杀虫、防病是农业绿色可持续发展的主流方向. 在卢旺达,农民们正积极采用生物农药作为主要的生物防治方法,以推动农业的可持续发展. 生物农药是一类来源于微生物及其代谢产物(如病毒、真菌、细菌、线虫等)、植物及其代谢产物(如植物次生物质、精油及树皮、根和叶子的提取物)的绿色农药,不仅对人类安全无害、对环境友好,而且具有超低用量、高选择性等优点,可代替传统的化学杀虫剂[39]. 卢旺达的一些专家学者已认识到病虫害绿色防治的重要性,并逐步展开相关的研究,这其中包括植物挥发油[40]、植物精油[41]及一些昆虫病原线虫,如斯氏线虫(S. carpocapsae RW14-G-R3a-2、S. longicaudum X7)和异小杆线虫(H. bacteriophora RW14-N-C4a)等[42-44].

    相较于发达国家,卢旺达农民在农业病虫害防治上主要依赖化学杀虫剂. 然而,这种做法不仅加剧了害虫的抗药性,降低了粮食作物的安全性,更对生态环境造成了严重破坏,对当地人民的生活构成了潜在威胁. 尽管卢旺达在农林病虫害生物防治方面已有探索,但从事该领域研究和应用的农业科技人员及专业种植者相对较少. 对于关键农作物害虫,如烟粉虱、草地贪夜蛾和蚜虫等,没有明确利用生物防治来进行防控的研究. 因此,在卢旺达进行生物防治研究前景非常广阔. 中国在农业病虫害防治领域,特别是生物防治方面,取得了丰硕的研究成果,生物防治技术推广后取得了显著成效,在国内得到了广泛应用. 近年来,中国与包括卢旺达在内的非洲国家之间的全方位合作日益深化,这种合作无疑将促进卢旺达农业的持续发展,进而带动其经济复苏和社会稳定性的提升.

Table (1) Reference (44)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return